亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Lowering costs by driving high utilization across deep learning workloads is a crucial lever for cloud providers. We present Singularity, Microsoft's globally distributed scheduling service for highly-efficient and reliable execution of deep learning training and inference workloads. At the heart of Singularity is a novel, workload-aware scheduler that can transparently preempt and elastically scale deep learning workloads to drive high utilization without impacting their correctness or performance, across a global fleet of AI accelerators (e.g., GPUs, FPGAs). All jobs in Singularity are preemptable, migratable, and dynamically resizable (elastic) by default: a live job can be dynamically and transparently (a) preempted and migrated to a different set of nodes, cluster, data center or a region and resumed exactly from the point where the execution was preempted, and (b) resized (i.e., elastically scaled-up/down) on a varying set of accelerators of a given type. Our mechanisms are transparent in that they do not require the user to make any changes to their code or require using any custom libraries that may limit flexibility. Additionally, our approach significantly improves the reliability of deep learning workloads. We show that the resulting efficiency and reliability gains with Singularity are achieved with negligible impact on the steady-state performance. Finally, our design approach is agnostic of DNN architectures and handles a variety of parallelism strategies (e.g., data/pipeline/model parallelism).

相關內容

We present Blinded Memory (BliMe), a way to realize efficient and secure outsourced computation. BliMe consists of a novel and minimal set of ISA extensions that uses taint tracking to ensure the confidentiality of sensitive (client) data even in the presence of server malware, run-time attacks, and side-channel attacks. To secure outsourced computation, the BliMe extensions can be used together with an attestable, fixed-function trusted execution environment (TEE) and an encryption engine that provides atomic decrypt-and-taint and encrypt-and-untaint operations. The TEE engages in an attestation and key agreement protocol with the client. It provides the resulting client-specific keys to the encryption engine. Clients rely on remote attestation to ensure that their data will always be protected by BliMe's taint tracking policy after decryption. We provide a machine-checked security proof and an FPGA implementation (BliMe-Ibex) of BliMe's taint tracking policy. We show that BliMe-Ibex does not reduce performance relative to the unmodified core, and incurs only minor increases in resource consumption in terms of power ($<2\%$), LUTs ($<1\%$), and registers ($<3\%$).

The problem of scheduling unrelated machines has been studied since the inception of algorithmic mechanism design \cite{NR99}. It is a resource allocation problem that entails assigning $m$ tasks to $n$ machines for execution. Machines are regarded as strategic agents who may lie about their execution costs so as to minimize their allocated workload. To address the situation when monetary payment is not an option to compensate the machines' costs, \citeauthor{DBLP:journals/mst/Koutsoupias14} [2014] devised two \textit{truthful} mechanisms, K and P respectively, that achieve an approximation ratio of $\frac{n+1}{2}$ and $n$, for social cost minimization. In addition, no truthful mechanism can achieve an approximation ratio better than $\frac{n+1}{2}$. Hence, mechanism K is optimal. While approximation ratio provides a strong worst-case guarantee, it also limits us to a comprehensive understanding of mechanism performance on various inputs. This paper investigates these two scheduling mechanisms beyond the worst case. We first show that mechanism K achieves a smaller social cost than mechanism P on every input. That is, mechanism K is pointwise better than mechanism P. Next, for each task $j$, when machines' execution costs $t_i^j$ are independent and identically drawn from a task-specific distribution $F^j(t)$, we show that the average-case approximation ratio of mechanism K converges to a constant. This bound is tight for mechanism K. For a better understanding of this distribution dependent constant, on the one hand, we estimate its value by plugging in a few common distributions; on the other, we show that this converging bound improves a known bound \cite{DBLP:conf/aaai/Zhang18} which only captures the single-task setting. Last, we find that the average-case approximation ratio of mechanism P converges to the same constant.

When IP-packet processing is unconditionally carried out on behalf of an operating system kernel thread, processing systems can experience overload in high incoming traffic scenarios. This is especially worrying for embedded real-time devices controlling their physical environment in industrial IoT scenarios and automotive systems. We propose an embedded real-time aware IP stack adaption with an early demultiplexing scheme for incoming packets and subsequent per-flow aperiodic scheduling. By instrumenting existing embedded IP stacks, rigid prioritization with minimal latency is deployed without the need of further task resources. Simple mitigation techniques can be applied to individual flows, causing hardly measurable overhead while at the same time protecting the system from overload conditions. Our IP stack adaption is able to reduce the low-priority packet processing time by over 86% compared to an unmodified stack. The network subsystem can thereby remain active at a 7x higher general traffic load before disabling the receive IRQ as a last resort to assure deadlines.

Modern big data applications usually involve heterogeneous data sources and analytical functions, leading to increasing demand for polystore systems, especially analytical polystore systems. This paper presents AWESOME system along with a domain-specific language ADIL. ADIL is a powerful language which supports 1) native heterogeneous data models such as Corpus, Graph, and Relation; 2) a rich set of analytical functions; and 3) clear and rigorous semantics. AWESOME is an efficient tri-store middle-ware which 1) is built on the top of three heterogeneous DBMSs (Postgres, Solr, and Neo4j) and is easy to be extended to incorporate other systems; 2) supports the in-memory query engines and is equipped with analytical capability; 3) applies a cost model to efficiently execute workloads written in ADIL; 4) fully exploits machine resources to improve scalability. A set of experiments on real workloads demonstrate the capability, efficiency, and scalability of AWESOME.

Ethereum Improvement Proposal (EIP) 1559 was recently implemented to transform Ethereum's transaction fee market. EIP-1559 utilizes an algorithmic update rule with a constant learning rate to estimate a base fee. The base fee reflects prevailing network conditions and hence provides a more reliable oracle for current gas prices. Using on-chain data from the period after its launch, we evaluate the impact of EIP-1559 on the user experience and market performance. Our empirical findings suggest that although EIP-1559 achieves its goals on average, short-term behavior is marked by intense, chaotic oscillations in block sizes (as predicted by our recent theoretical dynamical system analysis [1]) and slow adjustments during periods of demand bursts (e.g., NFT drops). Both phenomena lead to unwanted inter-block variability in mining rewards. To address this issue, we propose an alternative base fee adjustment rule in which the learning rate varies according to an additive increase, multiplicative decrease (AIMD) update scheme. Our simulations show that the latter robustly outperforms the EIP-1559 protocol under various demand scenarios. These results provide evidence that variable learning rate mechanisms may constitute a promising alternative to the default EIP-1559-based format and contribute to the ongoing discussion on the design of more efficient transaction fee markets.

Spectral efficiency improvement is a key focus in most wireless communication systems and achieved by various means such as using large antenna arrays and/or advanced modulation schemes and signal formats. This work proposes to further improve spectral efficiency through combining non-orthogonal spectrally efficient frequency division multiplexing (SEFDM) systems with index modulation (IM), which can efficiently make use of the indices of activated subcarriers as communication information. Recent research has verified that IM may be used with SEFDM to alleviate inter-carrier interference (ICI) and improve error performance. This work proposes new SEFDM signal formats based on novel activation pattern designs, which limit the locations of activated subcarriers and enable a variable number of activated subcarriers in each SEFDM subblock. SEFDM-IM system designs are developed by jointly considering activation patterns, modulation schemes and signal waveform formats, with a set of solutions evaluated under different spectral efficiency scenarios. Detailed modelling of coded systems and simulation studies reveal that the proposed designs not only lead to better bit error rate (BER) but also lower peak-to-average power ratio (PAPR) and reduced computational complexity relative to other reported index-modulated systems.

Context: Forgetting is defined as a gradual process of losing information. Even though there are many studies demonstrating the effect of forgetting in software development, to the best of our knowledge, no study explores the impact of forgetting in software development using a controlled experiment approach. Objective: We would like to provide insights on the impact of forgetting in software development projects. We want to examine whether the recency & frequency of interaction impact forgetting in software development. Methods: We will conduct an experiment that examines the impact of forgetting in software development. Participants will first do an initial task. According to their initial task performance, they will be assigned to either the experiment or the control group. The experiment group will then do two additional tasks to enhance their exposure to the code. Both groups will then do a final task to see if additional exposure to the code benefits the experiment group's performance in the final task. Finally, we will conduct a survey and a recall task with the same participants to collect data about their perceptions of forgetting and quantify their memory performance, respectively.

Task graphs provide a simple way to describe scientific workflows (sets of tasks with dependencies) that can be executed on both HPC clusters and in the cloud. An important aspect of executing such graphs is the used scheduling algorithm. Many scheduling heuristics have been proposed in existing works; nevertheless, they are often tested in oversimplified environments. We provide an extensible simulation environment designed for prototyping and benchmarking task schedulers, which contains implementations of various scheduling algorithms and is open-sourced, in order to be fully reproducible. We use this environment to perform a comprehensive analysis of workflow scheduling algorithms with a focus on quantifying the effect of scheduling challenges that have so far been mostly neglected, such as delays between scheduler invocations or partially unknown task durations. Our results indicate that network models used by many previous works might produce results that are off by an order of magnitude in comparison to a more realistic model. Additionally, we show that certain implementation details of scheduling algorithms which are often neglected can have a large effect on the scheduler's performance, and they should thus be described in great detail to enable proper evaluation.

This paper addresses the difficulty of forecasting multiple financial time series (TS) conjointly using deep neural networks (DNN). We investigate whether DNN-based models could forecast these TS more efficiently by learning their representation directly. To this end, we make use of the dynamic factor graph (DFG) from that we enhance by proposing a novel variable-length attention-based mechanism to render it memory-augmented. Using this mechanism, we propose an unsupervised DNN architecture for multivariate TS forecasting that allows to learn and take advantage of the relationships between these TS. We test our model on two datasets covering 19 years of investment funds activities. Our experimental results show that our proposed approach outperforms significantly typical DNN-based and statistical models at forecasting their 21-day price trajectory.

Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.

北京阿比特科技有限公司