亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Sketch-guided image editing aims to achieve local fine-tuning of the image based on the sketch information provided by the user, while maintaining the original status of the unedited areas. Due to the high cost of acquiring human sketches, previous works mostly relied on edge maps as a substitute for sketches, but sketches possess more rich structural information. In this paper, we propose a sketch generation scheme that can preserve the main contours of an image and closely adhere to the actual sketch style drawn by the user. Simultaneously, current image editing methods often face challenges such as image distortion, training cost, and loss of fine details in the sketch. To address these limitations, We propose a conditional diffusion model (SketchFFusion) based on the sketch structure vector. We evaluate the generative performance of our model and demonstrate that it outperforms existing methods.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 編譯器 · Projection · 變換 · 區塊鏈 ·
2024 年 1 月 5 日

Zero-knowledge proofs (zk-Proofs) are communication protocols by which a prover can demonstrate to a verifier that it possesses a solution to a given public problem without revealing the content of the solution. Arbitrary computations can be transformed into an interactive zk-Proof so anyone is convinced that it was executed correctly without knowing what was executed on, having huge implications for digital currency. Despite this, interactive proofs are not suited for blockchain applications but novel protocols such as zk-SNARKs have made zero-knowledge ledgers like Zcash possible. This project builds upon Wolfram's ZeroKnowledgeProofs paclet and implements a zk-SNARK compiler based on Pinocchio protocol.

Far-field speech recognition is a challenging task that conventionally uses signal processing beamforming to attack noise and interference problem. But the performance has been found usually limited due to heavy reliance on environmental assumption. In this paper, we propose a unified multichannel far-field speech recognition system that combines the neural beamforming and transformer-based Listen, Spell, Attend (LAS) speech recognition system, which extends the end-to-end speech recognition system further to include speech enhancement. Such framework is then jointly trained to optimize the final objective of interest. Specifically, factored complex linear projection (fCLP) has been adopted to form the neural beamforming. Several pooling strategies to combine look directions are then compared in order to find the optimal approach. Moreover, information of the source direction is also integrated in the beamforming to explore the usefulness of source direction as a prior, which is usually available especially in multi-modality scenario. Experiments on different microphone array geometry are conducted to evaluate the robustness against spacing variance of microphone array. Large in-house databases are used to evaluate the effectiveness of the proposed framework and the proposed method achieve 19.26\% improvement when compared with a strong baseline.

Text-to-image person re-identification (TIReID) aims to retrieve the target person from an image gallery via a textual description query. Recently, pre-trained vision-language models like CLIP have attracted significant attention and have been widely utilized for this task due to their robust capacity for semantic concept learning and rich multi-modal knowledge. However, recent CLIP-based TIReID methods commonly rely on direct fine-tuning of the entire network to adapt the CLIP model for the TIReID task. Although these methods show competitive performance on this topic, they are suboptimal as they necessitate simultaneous domain adaptation and task adaptation. To address this issue, we attempt to decouple these two processes during the training stage. Specifically, we introduce the prompt tuning strategy to enable domain adaptation and propose a two-stage training approach to disentangle domain adaptation from task adaptation. In the first stage, we freeze the two encoders from CLIP and solely focus on optimizing the prompts to alleviate domain gap between the original training data of CLIP and downstream tasks. In the second stage, we maintain the fixed prompts and fine-tune the CLIP model to prioritize capturing fine-grained information, which is more suitable for TIReID task. Finally, we evaluate the effectiveness of our method on three widely used datasets. Compared to the directly fine-tuned approach, our method achieves significant improvements.

Histopathological image classification is an important task in medical image analysis. Recent approaches generally rely on weakly supervised learning due to the ease of acquiring case-level labels from pathology reports. However, patch-level classification is preferable in applications where only a limited number of cases are available or when local prediction accuracy is critical. On the other hand, acquiring extensive datasets with localized labels for training is not feasible. In this paper, we propose a semi-supervised patch-level histopathological image classification model, named CLASS-M, that does not require extensively labeled datasets. CLASS-M is formed by two main parts: a contrastive learning module that uses separated Hematoxylin and Eosin images generated through an adaptive stain separation process, and a module with pseudo-labels using MixUp. We compare our model with other state-of-the-art models on two clear cell renal cell carcinoma datasets. We demonstrate that our CLASS-M model has the best performance on both datasets. Our code is available at github.com/BzhangURU/Paper_CLASS-M/tree/main

The increased demand of cyber security professionals has also increased the development of new platforms and tools that help those professionals to improve their offensive skills. One of these platforms is HackTheBox, an online cyber security training platform that delivers a controlled and safe environment for those professionals to explore virtual machines in a Capture the Flag (CTF) competition style. Most of the tools used in a CTF, or even on real-world Penetration Testing (Pentest), were developed for specific reasons so each tool usually has different input and output formats. These different formats make it hard for cyber security professionals and CTF competitors to develop an attack graph. In order to help cyber security professionals and CTF competitors to discover, select and exploit an attack vector, this paper presents Shadow Blade, a tool to aid users to interact with their attack vectors.

Multichannel convolutive blind speech source separation refers to the problem of separating different speech sources from the observed multichannel mixtures without much a priori information about the mixing system. Multichannel nonnegative matrix factorization (MNMF) has been proven to be one of the most powerful separation frameworks and the representative algorithms such as MNMF and the independent low-rank matrix analysis (ILRMA) have demonstrated great performance. However, the sparseness properties of speech source signals are not fully taken into account in such a framework. It is well known that speech signals are sparse in nature, which is considered in this work to improve the separation performance. Specifically, we utilize the Bingham and Laplace distributions to formulate a disjoint constraint regularizer, which is subsequently incorporated into both MNMF and ILRMA. We then derive majorization-minimization rules for updating parameters related to the source model, resulting in the development of two enhanced algorithms: s-MNMF and s-ILRMA. Comprehensive simulations are conducted, and the results unequivocally demonstrate the efficacy of our proposed methodologies.

Document-based Question-Answering (QA) tasks are crucial for precise information retrieval. While some existing work focus on evaluating large language models performance on retrieving and answering questions from documents, assessing the LLMs performance on QA types that require exact answer selection from predefined options and numerical extraction is yet to be fully assessed. In this paper, we specifically focus on this underexplored context and conduct empirical analysis of LLMs (GPT-4 and GPT-3.5) on question types, including single-choice, yes-no, multiple-choice, and number extraction questions from documents in zero-shot setting. We use the CogTale dataset for evaluation, which provide human expert-tagged responses, offering a robust benchmark for precision and factual grounding. We found that LLMs, particularly GPT-4, can precisely answer many single-choice and yes-no questions given relevant context, demonstrating their efficacy in information retrieval tasks. However, their performance diminishes when confronted with multiple-choice and number extraction formats, lowering the overall performance of the model on this task, indicating that these models may not yet be sufficiently reliable for the task. This limits the applications of LLMs on applications demanding precise information extraction from documents, such as meta-analysis tasks. These findings hinge on the assumption that the retrievers furnish pertinent context necessary for accurate responses, emphasizing the need for further research. Our work offers a framework for ongoing dataset evaluation, ensuring that LLM applications for information retrieval and document analysis continue to meet evolving standards.

Despite increasing interest in the automatic detection of media frames in NLP, the problem is typically simplified as single-label classification and adopts a topic-like view on frames, evading modelling the broader document-level narrative. In this work, we revisit a widely used conceptualization of framing from the communication sciences which explicitly captures elements of narratives, including conflict and its resolution, and integrate it with the narrative framing of key entities in the story as heroes, victims or villains. We adapt an effective annotation paradigm that breaks a complex annotation task into a series of simpler binary questions, and present an annotated data set of English news articles, and a case study on the framing of climate change in articles from news outlets across the political spectrum. Finally, we explore automatic multi-label prediction of our frames with supervised and semi-supervised approaches, and present a novel retrieval-based method which is both effective and transparent in its predictions. We conclude with a discussion of opportunities and challenges for future work on document-level models of narrative framing.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司