Recently, mobile robots have become important tools in various industries, especially in logistics. Deep reinforcement learning emerged as an alternative planning method to replace overly conservative approaches and promises more efficient and flexible navigation. However, deep reinforcement learning approaches are not suitable for long-range navigation due to their proneness to local minima and lack of long term memory, which hinders its widespread integration into industrial applications of mobile robotics. In this paper, we propose a navigation system incorporating deep-reinforcement-learning-based local planners into conventional navigation stacks for long-range navigation. Therefore, a framework for training and testing the deep reinforcement learning algorithms along with classic approaches is presented. We evaluated our deep-reinforcement-learning-enhanced navigation system against various conventional planners and found that our system outperforms them in terms of safety, efficiency and robustness.
Allocating physical layer resources to users based on channel quality, buffer size, requirements and constraints represents one of the central optimization problems in the management of radio resources. The solution space grows combinatorially with the cardinality of each dimension making it hard to find optimal solutions using an exhaustive search or even classical optimization algorithms given the stringent time requirements. This problem is even more pronounced in MU-MIMO scheduling where the scheduler can assign multiple users to the same time-frequency physical resources. Traditional approaches thus resort to designing heuristics that trade optimality in favor of feasibility of execution. In this work we treat the MU-MIMO scheduling problem as a tree-structured combinatorial problem and, borrowing from the recent successes of AlphaGo Zero, we investigate the feasibility of searching for the best performing solutions using a combination of Monte Carlo Tree Search and Reinforcement Learning. To cater to the nature of the problem at hand, like the lack of an intrinsic ordering of the users as well as the importance of dependencies between combinations of users, we make fundamental modifications to the neural network architecture by introducing the self-attention mechanism. We then demonstrate that the resulting approach is not only feasible but vastly outperforms state-of-the-art heuristic-based scheduling approaches in the presence of measurement uncertainties and finite buffers.
Controllers for autonomous systems that operate in safety-critical settings must account for stochastic disturbances. Such disturbances are often modelled as process noise, and common assumptions are that the underlying distributions are known and/or Gaussian. In practice, however, these assumptions may be unrealistic and can lead to poor approximations of the true noise distribution. We present a novel planning method that does not rely on any explicit representation of the noise distributions. In particular, we address the problem of computing a controller that provides probabilistic guarantees on safely reaching a target. First, we abstract the continuous system into a discrete-state model that captures noise by probabilistic transitions between states. As a key contribution, we adapt tools from the scenario approach to compute probably approximately correct (PAC) bounds on these transition probabilities, based on a finite number of samples of the noise. We capture these bounds in the transition probability intervals of a so-called interval Markov decision process (iMDP). This iMDP is robust against uncertainty in the transition probabilities, and the tightness of the probability intervals can be controlled through the number of samples. We use state-of-the-art verification techniques to provide guarantees on the iMDP, and compute a controller for which these guarantees carry over to the autonomous system. Realistic benchmarks show the practical applicability of our method, even when the iMDP has millions of states or transitions.
Decision-making module enables autonomous vehicles to reach appropriate maneuvers in the complex urban environments, especially the intersection situations. This work proposes a deep reinforcement learning (DRL) based left-turn decision-making framework at unsignalized intersection for autonomous vehicles. The objective of the studied automated vehicle is to make an efficient and safe left-turn maneuver at a four-way unsignalized intersection. The exploited DRL methods include deep Q-learning (DQL) and double DQL. Simulation results indicate that the presented decision-making strategy could efficaciously reduce the collision rate and improve transport efficiency. This work also reveals that the constructed left-turn control structure has a great potential to be applied in real-time.
Popular navigation stacks implemented on top of open-source frameworks such as ROS(Robot Operating System) and ROS2 represent the robot workspace using a discretized 2D occupancy grid. This method, while requiring less computation, restricts the use of such navigation stacks to wheeled robots navigating on flat surfaces. In this paper, we present a navigation stack that uses a volumetric representation of the robot workspace, and hence can be extended to aerial and legged robots navigating through uneven terrain. Additionally, we present a new sampling-based motion planning algorithm which introduces a bi-directional approach to the Batch Informed Trees (BIT*) motion planning algorithm, whilst wrapping it with a strategy switching approach in order to reduce the initial time taken to find a path, in addition to the time taken to find the shortest path.
This paper presents a novel strategy for autonomous teamed exploration of subterranean environments using legged and aerial robots. Tailored to the fact that subterranean settings, such as cave networks and underground mines, often involve complex, large-scale and multi-branched topologies, while wireless communication within them can be particularly challenging, this work is structured around the synergy of an onboard exploration path planner that allows for resilient long-term autonomy, and a multi-robot coordination framework. The onboard path planner is unified across legged and flying robots and enables navigation in environments with steep slopes, and diverse geometries. When a communication link is available, each robot of the team shares submaps to a centralized location where a multi-robot coordination framework identifies global frontiers of the exploration space to inform each system about where it should re-position to best continue its mission. The strategy is verified through a field deployment inside an underground mine in Switzerland using a legged and a flying robot collectively exploring for 45 min, as well as a longer simulation study with three systems.
Breakthroughs in machine learning in the last decade have led to `digital intelligence', i.e. machine learning models capable of learning from vast amounts of labeled data to perform several digital tasks such as speech recognition, face recognition, machine translation and so on. The goal of this thesis is to make progress towards designing algorithms capable of `physical intelligence', i.e. building intelligent autonomous navigation agents capable of learning to perform complex navigation tasks in the physical world involving visual perception, natural language understanding, reasoning, planning, and sequential decision making. Despite several advances in classical navigation methods in the last few decades, current navigation agents struggle at long-term semantic navigation tasks. In the first part of the thesis, we discuss our work on short-term navigation using end-to-end reinforcement learning to tackle challenges such as obstacle avoidance, semantic perception, language grounding, and reasoning. In the second part, we present a new class of navigation methods based on modular learning and structured explicit map representations, which leverage the strengths of both classical and end-to-end learning methods, to tackle long-term navigation tasks. We show that these methods are able to effectively tackle challenges such as localization, mapping, long-term planning, exploration and learning semantic priors. These modular learning methods are capable of long-term spatial and semantic understanding and achieve state-of-the-art results on various navigation tasks.
Efficient exploration remains a major challenge for reinforcement learning. One reason is that the variability of the returns often depends on the current state and action, and is therefore heteroscedastic. Classical exploration strategies such as upper confidence bound algorithms and Thompson sampling fail to appropriately account for heteroscedasticity, even in the bandit setting. Motivated by recent findings that address this issue in bandits, we propose to use Information-Directed Sampling (IDS) for exploration in reinforcement learning. As our main contribution, we build on recent advances in distributional reinforcement learning and propose a novel, tractable approximation of IDS for deep Q-learning. The resulting exploration strategy explicitly accounts for both parametric uncertainty and heteroscedastic observation noise. We evaluate our method on Atari games and demonstrate a significant improvement over alternative approaches.
Although deep reinforcement learning (deep RL) methods have lots of strengths that are favorable if applied to autonomous driving, real deep RL applications in autonomous driving have been slowed down by the modeling gap between the source (training) domain and the target (deployment) domain. Unlike current policy transfer approaches, which generally limit to the usage of uninterpretable neural network representations as the transferred features, we propose to transfer concrete kinematic quantities in autonomous driving. The proposed robust-control-based (RC) generic transfer architecture, which we call RL-RC, incorporates a transferable hierarchical RL trajectory planner and a robust tracking controller based on disturbance observer (DOB). The deep RL policies trained with known nominal dynamics model are transfered directly to the target domain, DOB-based robust tracking control is applied to tackle the modeling gap including the vehicle dynamics errors and the external disturbances such as side forces. We provide simulations validating the capability of the proposed method to achieve zero-shot transfer across multiple driving scenarios such as lane keeping, lane changing and obstacle avoidance.
Recent studies have shown the vulnerability of reinforcement learning (RL) models in noisy settings. The sources of noises differ across scenarios. For instance, in practice, the observed reward channel is often subject to noise (e.g., when observed rewards are collected through sensors), and thus observed rewards may not be credible as a result. Also, in applications such as robotics, a deep reinforcement learning (DRL) algorithm can be manipulated to produce arbitrary errors. In this paper, we consider noisy RL problems where observed rewards by RL agents are generated with a reward confusion matrix. We call such observed rewards as perturbed rewards. We develop an unbiased reward estimator aided robust RL framework that enables RL agents to learn in noisy environments while observing only perturbed rewards. Our framework draws upon approaches for supervised learning with noisy data. The core ideas of our solution include estimating a reward confusion matrix and defining a set of unbiased surrogate rewards. We prove the convergence and sample complexity of our approach. Extensive experiments on different DRL platforms show that policies based on our estimated surrogate reward can achieve higher expected rewards, and converge faster than existing baselines. For instance, the state-of-the-art PPO algorithm is able to obtain 67.5% and 46.7% improvements in average on five Atari games, when the error rates are 10% and 30% respectively.
Reinforcement learning (RL) has advanced greatly in the past few years with the employment of effective deep neural networks (DNNs) on the policy networks. With the great effectiveness came serious vulnerability issues with DNNs that small adversarial perturbations on the input can change the output of the network. Several works have pointed out that learned agents with a DNN policy network can be manipulated against achieving the original task through a sequence of small perturbations on the input states. In this paper, we demonstrate furthermore that it is also possible to impose an arbitrary adversarial reward on the victim policy network through a sequence of attacks. Our method involves the latest adversarial attack technique, Adversarial Transformer Network (ATN), that learns to generate the attack and is easy to integrate into the policy network. As a result of our attack, the victim agent is misguided to optimise for the adversarial reward over time. Our results expose serious security threats for RL applications in safety-critical systems including drones, medical analysis, and self-driving cars.