亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study conducts a thorough examination of the research stream focusing on AI risks in healthcare, aiming to explore the distinct genres within this domain. A selection criterion was employed to carefully analyze 39 articles to identify three primary genres of AI risks prevalent in healthcare: clinical data risks, technical risks, and socio-ethical risks. Selection criteria was based on journal ranking and impact factor. The research seeks to provide a valuable resource for future healthcare researchers, furnishing them with a comprehensive understanding of the complex challenges posed by AI implementation in healthcare settings. By categorizing and elucidating these genres, the study aims to facilitate the development of empirical qualitative and quantitative research, fostering evidence-based approaches to address AI-related risks in healthcare effectively. This endeavor contributes to building a robust knowledge base that can inform the formulation of risk mitigation strategies, ensuring safe and efficient integration of AI technologies in healthcare practices. Thus, it is important to study AI risks in healthcare to build better and efficient AI systems and mitigate risks.

相關內容

人(ren)工(gong)(gong)智能雜志AI(Artificial Intelligence)是目前公認(ren)的(de)(de)(de)(de)(de)發(fa)表該(gai)領域(yu)最新(xin)研究(jiu)成果的(de)(de)(de)(de)(de)主要國際論壇。該(gai)期(qi)刊歡迎有關(guan)AI廣泛方(fang)(fang)面的(de)(de)(de)(de)(de)論文,這些(xie)論文構(gou)成了整個(ge)領域(yu)的(de)(de)(de)(de)(de)進(jin)步,也歡迎介紹人(ren)工(gong)(gong)智能應(ying)用(yong)的(de)(de)(de)(de)(de)論文,但重點應(ying)該(gai)放在新(xin)的(de)(de)(de)(de)(de)和新(xin)穎(ying)的(de)(de)(de)(de)(de)人(ren)工(gong)(gong)智能方(fang)(fang)法如何(he)提高應(ying)用(yong)領域(yu)的(de)(de)(de)(de)(de)性(xing)能,而不是介紹傳統(tong)人(ren)工(gong)(gong)智能方(fang)(fang)法的(de)(de)(de)(de)(de)另(ling)一個(ge)應(ying)用(yong)。關(guan)于應(ying)用(yong)的(de)(de)(de)(de)(de)論文應(ying)該(gai)描述(shu)一個(ge)原則性(xing)的(de)(de)(de)(de)(de)解決方(fang)(fang)案,強調其新(xin)穎(ying)性(xing),并(bing)對正在開發(fa)的(de)(de)(de)(de)(de)人(ren)工(gong)(gong)智能技(ji)術(shu)進(jin)行深入的(de)(de)(de)(de)(de)評估。 官網地址:

Deception and persuasion play a critical role in long-horizon dialogues between multiple parties, especially when the interests, goals, and motivations of the participants are not aligned. Such complex tasks pose challenges for current Large Language Models (LLM) as deception and persuasion can easily mislead them, especially in long-horizon multi-party dialogues. To this end, we explore the game of Avalon: The Resistance, a social deduction game in which players must determine each other's hidden identities to complete their team's objective. We introduce an online testbed and a dataset containing 20 carefully collected and labeled games among human players that exhibit long-horizon deception in a cooperative-competitive setting. We discuss the capabilities of LLMs to utilize deceptive long-horizon conversations between six human players to determine each player's goal and motivation. Particularly, we discuss the multimodal integration of the chat between the players and the game's state that grounds the conversation, providing further insights into the true player identities. We find that even current state-of-the-art LLMs do not reach human performance, making our dataset a compelling benchmark to investigate the decision-making and language-processing capabilities of LLMs. Our dataset and online testbed can be found at our project website: //sstepput.github.io/Avalon-NLU/

Evaluating machine learning (ML) systems on their ability to learn known classifiers allows fine-grained examination of the patterns they can learn, which builds confidence when they are applied to the learning of unknown classifiers. This article presents a new benchmark for ML systems on sequence classification called MLRegTest, which contains training, development, and test sets from 1,800 regular languages. Different kinds of formal languages represent different kinds of long-distance dependencies, and correctly identifying long-distance dependencies in sequences is a known challenge for ML systems to generalize successfully. MLRegTest organizes its languages according to their logical complexity (monadic second order, first order, propositional, or monomial expressions) and the kind of logical literals (string, tier-string, subsequence, or combinations thereof). The logical complexity and choice of literal provides a systematic way to understand different kinds of long-distance dependencies in regular languages, and therefore to understand the capacities of different ML systems to learn such long-distance dependencies. Finally, the performance of different neural networks (simple RNN, LSTM, GRU, transformer) on MLRegTest is examined. The main conclusion is that their performance depends significantly on the kind of test set, the class of language, and the neural network architecture.

Many NLP researchers are experiencing an existential crisis triggered by the astonishing success of ChatGPT and other systems based on large language models (LLMs). After such a disruptive change to our understanding of the field, what is left to do? Taking a historical lens, we look for guidance from the first era of LLMs, which began in 2005 with large $n$-gram models for machine translation. We identify durable lessons from the first era, and more importantly, we identify evergreen problems where NLP researchers can continue to make meaningful contributions in areas where LLMs are ascendant. Among these lessons, we discuss the primacy of hardware advancement in shaping the availability and importance of scale, as well as the urgent challenge of quality evaluation, both automated and human. We argue that disparities in scale are transient and that researchers can work to reduce them; that data, rather than hardware, is still a bottleneck for many meaningful applications; that meaningful evaluation informed by actual use is still an open problem; and that there is still room for speculative approaches.

Congenital heart disease (CHD) encompasses a spectrum of cardiovascular structural abnormalities, often requiring customized treatment plans for individual patients. Computational modeling and analysis of these unique cardiac anatomies can improve diagnosis and treatment planning and may ultimately lead to improved outcomes. Deep learning (DL) methods have demonstrated the potential to enable efficient treatment planning by automating cardiac segmentation and mesh construction for patients with normal cardiac anatomies. However, CHDs are often rare, making it challenging to acquire sufficiently large patient cohorts for training such DL models. Generative modeling of cardiac anatomies has the potential to fill this gap via the generation of virtual cohorts; however, prior approaches were largely designed for normal anatomies and cannot readily capture the significant topological variations seen in CHD patients. Therefore, we propose a type- and shape-disentangled generative approach suitable to capture the wide spectrum of cardiac anatomies observed in different CHD types and synthesize differently shaped cardiac anatomies that preserve the unique topology for specific CHD types. Our DL approach represents generic whole heart anatomies with CHD type-specific abnormalities implicitly using signed distance fields (SDF) based on CHD type diagnosis, which conveniently captures divergent anatomical variations across different types and represents meaningful intermediate CHD states. To capture the shape-specific variations, we then learn invertible deformations to morph the learned CHD type-specific anatomies and reconstruct patient-specific shapes. Our approach has the potential to augment the image-segmentation pairs for rarer CHD types for cardiac segmentation and generate cohorts of CHD cardiac meshes for computational simulation.

Developmental psychologists have spent decades devising experiments to test the intelligence and knowledge of infants and children, tracing the origin of crucial concepts and capacities. Moreover, experimental techniques in developmental psychology have been carefully designed to discriminate the cognitive capacities that underlie particular behaviors. We propose that using classical experiments from child development is a particularly effective way to probe the computational abilities of AI models, in general, and LLMs in particular. First, the methodological techniques of developmental psychology, such as the use of novel stimuli to control for past experience or control conditions to determine whether children are using simple associations, can be equally helpful for assessing the capacities of LLMs. In parallel, testing LLMs in this way can tell us whether the information that is encoded in text is sufficient to enable particular responses, or whether those responses depend on other kinds of information, such as information from exploration of the physical world. In this work we adapt classical developmental experiments to evaluate the capabilities of LaMDA, a large language model from Google. We propose a novel LLM Response Score (LRS) metric which can be used to evaluate other language models, such as GPT. We find that LaMDA generates appropriate responses that are similar to those of children in experiments involving social understanding, perhaps providing evidence that knowledge of these domains is discovered through language. On the other hand, LaMDA's responses in early object and action understanding, theory of mind, and especially causal reasoning tasks are very different from those of young children, perhaps showing that these domains require more real-world, self-initiated exploration and cannot simply be learned from patterns in language input.

The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.

A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

北京阿比特科技有限公司