In this work, we use the communication of intent as a means to facilitate cooperation between autonomous vehicle agents. Generally speaking, intents can be any reliable information about its future behavior that a vehicle communicates with another vehicle. We implement this as an intent-sharing task atop the merging environment in the simulator of highway-env, which provides a collection of environments for learning decision-making strategies for autonomous vehicles. Under a simple setting between two agents, we carefully investigate how intent-sharing can aid the receiving vehicle in adjusting its behavior in highway merging scenarios.
Building on the cost-efficient pretraining advancements brought about by Crammed BERT, we enhance its performance and interpretability further by introducing a novel pretrained model Dependency Agreement Crammed BERT (DACBERT) and its two-stage pretraining framework - Dependency Agreement Pretraining. This framework, grounded by linguistic theories, seamlessly weaves syntax and semantic information into the pretraining process. The first stage employs four dedicated submodels to capture representative dependency agreements at the chunk level, effectively converting these agreements into embeddings. The second stage uses these refined embeddings, in tandem with conventional BERT embeddings, to guide the pretraining of the rest of the model. Evaluated on the GLUE benchmark, our DACBERT demonstrates notable improvement across various tasks, surpassing Crammed BERT by 3.13% in the RTE task and by 2.26% in the MRPC task. Furthermore, our method boosts the average GLUE score by 0.83%, underscoring its significant potential. The pretraining process can be efficiently executed on a single GPU within a 24-hour cycle, necessitating no supplementary computational resources or extending the pretraining duration compared with the Crammed BERT. Extensive studies further illuminate our approach's instrumental role in bolstering the interpretability of pretrained language models for natural language understanding tasks.
During the operation of industrial robots, unusual events may endanger the safety of humans and the quality of production. When collecting data to detect such cases, it is not ensured that data from all potentially occurring errors is included as unforeseeable events may happen over time. Therefore, anomaly detection (AD) delivers a practical solution, using only normal data to learn to detect unusual events. We introduce a dataset that allows training and benchmarking of anomaly detection methods for robotic applications based on machine data which will be made publicly available to the research community. As a typical robot task the dataset includes a pick-and-place application which involves movement, actions of the end effector and interactions with the objects of the environment. Since several of the contained anomalies are not task-specific but general, evaluations on our dataset are transferable to other robotics applications as well. Additionally, we present MVT-Flow (multivariate time-series flow) as a new baseline method for anomaly detection: It relies on deep-learning-based density estimation with normalizing flows, tailored to the data domain by taking its structure into account for the architecture. Our evaluation shows that MVT-Flow outperforms baselines from previous work by a large margin of 6.2% in area under ROC.
Legged robots with high locomotive performance have been extensively studied, and various leg structures have been proposed. Especially, a leg structure that can achieve both continuous and high jumps is advantageous for moving around in a three-dimensional environment. In this study, we propose a parallel wire-driven leg structure, which has one DoF of linear motion and two DoFs of rotation and is controlled by six wires, as a structure that can achieve both continuous jumping and high jumping. The proposed structure can simultaneously achieve high controllability on each DoF, long acceleration distance and high power required for jumping. In order to verify the jumping performance of the parallel wire-driven leg structure, we have developed a parallel wire-driven monopedal robot, RAMIEL. RAMIEL is equipped with quasi-direct drive, high power wire winding mechanisms and a lightweight leg, and can achieve a maximum jumping height of 1.6 m and a maximum of seven continuous jumps.
Contactless fingerprint recognition offers a higher level of user comfort and addresses hygiene concerns more effectively. However, it is also more vulnerable to presentation attacks such as photo paper, paper-printout, and various display attacks, which makes it more challenging to implement in biometric systems compared to contact-based modalities. Limited research has been conducted on presentation attacks in contactless fingerprint systems, and these studies have encountered challenges in terms of generalization and scalability since both bonafide samples and presentation attacks are utilized during training model. Although this approach appears promising, it lacks the ability to handle unseen attacks, which is a crucial factor for developing PAD methods that can generalize effectively. We introduced an innovative anti-spoofing approach that combines an unsupervised autoencoder with a convolutional block attention module to address the limitations of existing methods. Our model is exclusively trained on bonafide images without exposure to any spoofed samples during the training phase. It is then evaluated against various types of presentation attack images in the testing phase. The scheme we proposed has achieved an average BPCER of 0.96\% with an APCER of 1.6\% for presentation attacks involving various types of spoofed samples.
In this work, we consider the problem of intersectional group fairness in the classification setting, where the objective is to learn discrimination-free models in the presence of several intersecting sensitive groups. First, we illustrate various shortcomings of existing fairness measures commonly used to capture intersectional fairness. Then, we propose a new definition called the $\alpha$-Intersectional Fairness, which combines the absolute and the relative performance across sensitive groups and can be seen as a generalization of the notion of differential fairness. We highlight several desirable properties of the proposed definition and analyze its relation to other fairness measures. Finally, we benchmark multiple popular in-processing fair machine learning approaches using our new fairness definition and show that they do not achieve any improvement over a simple baseline. Our results reveal that the increase in fairness measured by previous definitions hides a "leveling down" effect, i.e., degrading the best performance over groups rather than improving the worst one.
Loop closure, as one of the crucial components in SLAM, plays an essential role in correcting the accumulated errors. Traditional appearance-based methods, such as bag-of-words models, are often limited by local 2D features and the volume of training data, making them less versatile and robust in real-world scenarios, leading to missed detections or false positives detections in loop closure. To address these issues, we first propose a object-level data association method based on multi-level verification, which can associate 2D semantic features of current frame with 3D objects landmarks of map. Next, taking advantage of these association relations, we introduce a semantic loop closure method based on quadric-level object map topology, which represents scenes through the topological graph of objects and achieves accurate loop closure at a wide field of view by comparing differences in the topological graphs. Finally, we integrate these two methods into a complete object-aware SLAM system. Qualitative experiments and ablation studies demonstrate the effectiveness and robustness of the proposed object-level data association algorithm. Quantitative experiments show that our semantic loop closure method outperforms existing state-of-the-art methods in terms of precision, recall and localization accuracy metrics.
Linear Recurrence has proven to be a powerful tool for modeling long sequences efficiently. In this work, we show that existing models fail to take full advantage of its potential. Motivated by this finding, we develop GateLoop, a foundational sequence model that generalizes linear recurrent models such as S4, S5, LRU and RetNet, by employing data-controlled state transitions. Utilizing this theoretical advance, GateLoop empirically outperforms existing models for auto-regressive language modeling. Our method comes with a low-cost $O(l)$ recurrent mode and an efficient $O(l \log_{2} l)$ parallel mode making use of highly optimized associative scan implementations. Furthermore, we derive an $O(l^2)$ surrogate attention mode, revealing remarkable implications for Transformer and recently proposed architectures. Specifically, we prove that our approach can be interpreted as providing data-controlled relative-positional information to Attention. While many existing models solely rely on data-controlled cumulative sums for context aggregation, our findings suggest that incorporating data-controlled complex cumulative products may be a crucial step towards more powerful sequence models.
Internet of Things devices can now be found everywhere, including in our households in the form of Smart Home networks. Despite their ubiquity, their security is unsatisfactory, as demonstrated by recent attacks. The IETF's MUD standard has as goal to simplify and automate the secure deployment of end devices in networks. A MUD file contains a device specific description of allowed network activities (e.g., allowed IP ports or host addresses) and can be used to configure for example a firewall. A major weakness of MUD is that it is not expressive enough to describe traffic patterns representing device interactions, which often occur in modern Smart Home platforms. In this article, we present a new language for describing such traffic patterns. The language allows writing device profiles that are more expressive than MUD files and take into account the interdependencies of traffic connections. We show how these profiles can be translated to efficient code for a lightweight firewall leveraging NFTables to block non-conforming traffic. We evaluate our approach on traffic generated by various Smart Home devices, and show that our system can accurately block unwanted traffic while inducing negligible latency.
LLMs have demonstrated impressive zero-shot performance on NLP tasks thanks to the knowledge they acquired in their training. In multiple-choice QA tasks, the LM probabilities are used as an imperfect measure of the plausibility of each answer choice. One of the major limitations of the basic score is that it treats all words as equally important. We propose CASE, a Commonsense-Augmented Score with an Expanded Answer Space. CASE addresses this limitation by assigning importance weights for individual words based on their semantic relations to other words in the input. The dynamic weighting approach outperforms basic LM scores, not only because it reduces noise from unimportant words, but also because it informs the model of implicit commonsense knowledge that may be useful for answering the question. We then also follow prior work in expanding the answer space by generating lexically-divergent answers that are conceptually-similar to the choices. When combined with answer space expansion, our method outperforms strong baselines on 5 commonsense benchmarks. We further show these two approaches are complementary and may be especially beneficial when using smaller LMs.
Recent years have witnessed the resurgence of knowledge engineering which is featured by the fast growth of knowledge graphs. However, most of existing knowledge graphs are represented with pure symbols, which hurts the machine's capability to understand the real world. The multi-modalization of knowledge graphs is an inevitable key step towards the realization of human-level machine intelligence. The results of this endeavor are Multi-modal Knowledge Graphs (MMKGs). In this survey on MMKGs constructed by texts and images, we first give definitions of MMKGs, followed with the preliminaries on multi-modal tasks and techniques. We then systematically review the challenges, progresses and opportunities on the construction and application of MMKGs respectively, with detailed analyses of the strength and weakness of different solutions. We finalize this survey with open research problems relevant to MMKGs.