Internet of Things devices can now be found everywhere, including in our households in the form of Smart Home networks. Despite their ubiquity, their security is unsatisfactory, as demonstrated by recent attacks. The IETF's MUD standard has as goal to simplify and automate the secure deployment of end devices in networks. A MUD file contains a device specific description of allowed network activities (e.g., allowed IP ports or host addresses) and can be used to configure for example a firewall. A major weakness of MUD is that it is not expressive enough to describe traffic patterns representing device interactions, which often occur in modern Smart Home platforms. In this article, we present a new language for describing such traffic patterns. The language allows writing device profiles that are more expressive than MUD files and take into account the interdependencies of traffic connections. We show how these profiles can be translated to efficient code for a lightweight firewall leveraging NFTables to block non-conforming traffic. We evaluate our approach on traffic generated by various Smart Home devices, and show that our system can accurately block unwanted traffic while inducing negligible latency.
Through iterative, cross-disciplinary discussions, we define and propose next-steps for Human-centered Generative AI (HGAI). We contribute a comprehensive research agenda that lays out future directions of Generative AI spanning three levels: aligning with human values; assimilating human intents; and augmenting human abilities. By identifying these next-steps, we intend to draw interdisciplinary research teams to pursue a coherent set of emergent ideas in HGAI, focusing on their interested topics while maintaining a coherent big picture of the future work landscape.
We provide a systematic investigation of using physics-informed neural networks to compute Lyapunov functions. We encode Lyapunov conditions as a partial differential equation (PDE) and use this for training neural network Lyapunov functions. We analyze the analytical properties of the solutions to the Lyapunov and Zubov PDEs. In particular, we show that employing the Zubov equation in training neural Lyapunov functions can lead to approximate regions of attraction close to the true domain of attraction. We also examine approximation errors and the convergence of neural approximations to the unique solution of Zubov's equation. We then provide sufficient conditions for the learned neural Lyapunov functions that can be readily verified by satisfiability modulo theories (SMT) solvers, enabling formal verification of both local stability analysis and region-of-attraction estimates in the large. Through a number of nonlinear examples, ranging from low to high dimensions, we demonstrate that the proposed framework can outperform traditional sums-of-squares (SOS) Lyapunov functions obtained using semidefinite programming (SDP).
We propose to train neural networks (NNs) using a novel variant of the ``Additively Preconditioned Trust-region Strategy'' (APTS). The proposed method is based on a parallelizable additive domain decomposition approach applied to the neural network's parameters. Built upon the TR framework, the APTS method ensures global convergence towards a minimizer. Moreover, it eliminates the need for computationally expensive hyper-parameter tuning, as the TR algorithm automatically determines the step size in each iteration. We demonstrate the capabilities, strengths, and limitations of the proposed APTS training method by performing a series of numerical experiments. The presented numerical study includes a comparison with widely used training methods such as SGD, Adam, LBFGS, and the standard TR method.
We introduce the Splatter Image, an ultra-fast approach for monocular 3D object reconstruction which operates at 38 FPS. Splatter Image is based on Gaussian Splatting, which has recently brought real-time rendering, fast training, and excellent scaling to multi-view reconstruction. For the first time, we apply Gaussian Splatting in a monocular reconstruction setting. Our approach is learning-based, and, at test time, reconstruction only requires the feed-forward evaluation of a neural network. The main innovation of Splatter Image is the surprisingly straightforward design: it uses a 2D image-to-image network to map the input image to one 3D Gaussian per pixel. The resulting Gaussians thus have the form of an image, the Splatter Image. We further extend the method to incorporate more than one image as input, which we do by adding cross-view attention. Owning to the speed of the renderer (588 FPS), we can use a single GPU for training while generating entire images at each iteration in order to optimize perceptual metrics like LPIPS. On standard benchmarks, we demonstrate not only fast reconstruction but also better results than recent and much more expensive baselines in terms of PSNR, LPIPS, and other metrics.
Graph Neural Networks (GNNs) have become mainstream methods for solving the semi-supervised node classification problem. However, due to the uneven location distribution of labeled nodes in the graph, labeled nodes are only accessible to a small portion of unlabeled nodes, leading to the \emph{under-reaching} issue. In this study, we firstly reveal under-reaching by conducting an empirical investigation on various well-known graphs. Then, we demonstrate that under-reaching results in unsatisfactory distribution alignment between labeled and unlabeled nodes through systematic experimental analysis, significantly degrading GNNs' performance. To tackle under-reaching for GNNs, we propose an architecture-agnostic method dubbed NodeMixup. The fundamental idea is to (1) increase the reachability of labeled nodes by labeled-unlabeled pairs mixup, (2) leverage graph structures via fusing the neighbor connections of intra-class node pairs to improve performance gains of mixup, and (3) use neighbor label distribution similarity incorporating node degrees to determine sampling weights for node mixup. Extensive experiments demonstrate the efficacy of NodeMixup in assisting GNNs in handling under-reaching. The source code is available at \url{//github.com/WeigangLu/NodeMixup}.
Events describe happenings in our world that are of importance. Naturally, understanding events mentioned in multimedia content and how they are related forms an important way of comprehending our world. Existing literature can infer if events across textual and visual (video) domains are identical (via grounding) and thus, on the same semantic level. However, grounding fails to capture the intricate cross-event relations that exist due to the same events being referred to on many semantic levels. For example, in Figure 1, the abstract event of "war" manifests at a lower semantic level through subevents "tanks firing" (in video) and airplane "shot" (in text), leading to a hierarchical, multimodal relationship between the events. In this paper, we propose the task of extracting event hierarchies from multimodal (video and text) data to capture how the same event manifests itself in different modalities at different semantic levels. This reveals the structure of events and is critical to understanding them. To support research on this task, we introduce the Multimodal Hierarchical Events (MultiHiEve) dataset. Unlike prior video-language datasets, MultiHiEve is composed of news video-article pairs, which makes it rich in event hierarchies. We densely annotate a part of the dataset to construct the test benchmark. We show the limitations of state-of-the-art unimodal and multimodal baselines on this task. Further, we address these limitations via a new weakly supervised model, leveraging only unannotated video-article pairs from MultiHiEve. We perform a thorough evaluation of our proposed method which demonstrates improved performance on this task and highlight opportunities for future research.
Input-Convex Neural Networks (ICNNs) are networks that guarantee convexity in their input-output mapping. These networks have been successfully applied for energy-based modelling, optimal transport problems and learning invariances. The convexity of ICNNs is achieved by using non-decreasing convex activation functions and non-negative weights. Because of these peculiarities, previous initialisation strategies, which implicitly assume centred weights, are not effective for ICNNs. By studying signal propagation through layers with non-negative weights, we are able to derive a principled weight initialisation for ICNNs. Concretely, we generalise signal propagation theory by removing the assumption that weights are sampled from a centred distribution. In a set of experiments, we demonstrate that our principled initialisation effectively accelerates learning in ICNNs and leads to better generalisation. Moreover, we find that, in contrast to common belief, ICNNs can be trained without skip-connections when initialised correctly. Finally, we apply ICNNs to a real-world drug discovery task and show that they allow for more effective molecular latent space exploration.
Data plays a fundamental role in the training of Large Language Models (LLMs). Effective data management, particularly in the formulation of a well-suited training dataset, holds significance for enhancing model performance and improving training efficiency during pretraining and supervised fine-tuning phases. Despite the considerable importance of data management, the current research community still falls short in providing a systematic analysis of the rationale behind management strategy selection, its consequential effects, methodologies for evaluating curated datasets, and the ongoing pursuit of improved strategies. Consequently, the exploration of data management has attracted more and more attention among the research community. This survey provides a comprehensive overview of current research in data management within both the pretraining and supervised fine-tuning stages of LLMs, covering various noteworthy aspects of data management strategy design: data quantity, data quality, domain/task composition, etc. Looking toward the future, we extrapolate existing challenges and outline promising directions for development in this field. Therefore, this survey serves as a guiding resource for practitioners aspiring to construct powerful LLMs through effective data management practices. The collection of the latest papers is available at //github.com/ZigeW/data_management_LLM.
With the bomb ignited by ChatGPT, Transformer-based Large Language Models (LLMs) have paved a revolutionary path toward Artificial General Intelligence (AGI) and have been applied in diverse areas as knowledge bases, human interfaces, and dynamic agents. However, a prevailing limitation exists: many current LLMs, constrained by resources, are primarily pre-trained on shorter texts, rendering them less effective for longer-context prompts, commonly encountered in real-world settings. In this paper, we present a comprehensive survey focusing on the advancement of model architecture in Transformer-based LLMs to optimize long-context capabilities across all stages from pre-training to inference. We firstly delineate and analyze the problems of handling long-context input and output with the current Transformer-based models. Then, we mainly offer a holistic taxonomy to navigate the landscape of Transformer upgrades on architecture to solve these problems. Afterward, we provide the investigation on wildly used evaluation necessities tailored for long-context LLMs, including datasets, metrics, and baseline models, as well as some amazing optimization toolkits like libraries, systems, and compilers to augment LLMs' efficiency and efficacy across different stages. Finally, we further discuss the predominant challenges and potential avenues for future research in this domain. Additionally, we have established a repository where we curate relevant literature with real-time updates at //github.com/Strivin0311/long-llms-learning.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.