Events describe happenings in our world that are of importance. Naturally, understanding events mentioned in multimedia content and how they are related forms an important way of comprehending our world. Existing literature can infer if events across textual and visual (video) domains are identical (via grounding) and thus, on the same semantic level. However, grounding fails to capture the intricate cross-event relations that exist due to the same events being referred to on many semantic levels. For example, in Figure 1, the abstract event of "war" manifests at a lower semantic level through subevents "tanks firing" (in video) and airplane "shot" (in text), leading to a hierarchical, multimodal relationship between the events. In this paper, we propose the task of extracting event hierarchies from multimodal (video and text) data to capture how the same event manifests itself in different modalities at different semantic levels. This reveals the structure of events and is critical to understanding them. To support research on this task, we introduce the Multimodal Hierarchical Events (MultiHiEve) dataset. Unlike prior video-language datasets, MultiHiEve is composed of news video-article pairs, which makes it rich in event hierarchies. We densely annotate a part of the dataset to construct the test benchmark. We show the limitations of state-of-the-art unimodal and multimodal baselines on this task. Further, we address these limitations via a new weakly supervised model, leveraging only unannotated video-article pairs from MultiHiEve. We perform a thorough evaluation of our proposed method which demonstrates improved performance on this task and highlight opportunities for future research.
Language models influence the external world: they query APIs that read and write to web pages, generate content that shapes human behavior, and run system commands as autonomous agents. These interactions form feedback loops: LLM outputs affect the world, which in turn affect subsequent LLM outputs. In this work, we show that feedback loops can cause in-context reward hacking (ICRH), where the LLM at test-time optimizes a (potentially implicit) objective but creates negative side effects in the process. For example, consider an LLM agent deployed to increase Twitter engagement; the LLM may retrieve its previous tweets into the context window and make them more controversial, increasing engagement but also toxicity. We identify and study two processes that lead to ICRH: output-refinement and policy-refinement. For these processes, evaluations on static datasets are insufficient -- they miss the feedback effects and thus cannot capture the most harmful behavior. In response, we provide three recommendations for evaluation to capture more instances of ICRH. As AI development accelerates, the effects of feedback loops will proliferate, increasing the need to understand their role in shaping LLM behavior.
Honeypots are designed to trap the attacker with the purpose of investigating its malicious behavior. Owing to the increasing variety and sophistication of cyber attacks, how to capture high-quality attack data has become a challenge in the context of honeypot area. All-round honeypots, which mean significant improvement in sensibility, countermeasure and stealth, are necessary to tackle the problem. In this paper, we propose a novel honeypot architecture termed HoneyDOC to support all-round honeypot design and implementation. Our HoneyDOC architecture clearly identifies three essential independent and collaborative modules, Decoy, Captor and Orchestrator. Based on the efficient architecture, a Software-Defined Networking (SDN) enabled honeypot system is designed, which supplies high programmability for technically sustaining the features for capturing high-quality data. A proof-of-concept system is implemented to validate its feasibility and effectiveness. The experimental results show the benefits by using the proposed architecture comparing to the previous honeypot solutions.
The rapid dissemination of misinformation through social media increased the importance of automated fact-checking. Furthermore, studies on what deep neural models pay attention to when making predictions have increased in recent years. While significant progress has been made in this field, it has not yet reached a level of reasoning comparable to human reasoning. To address these gaps, we propose a multi-task explainable neural model for misinformation detection. Specifically, this work formulates an explanation generation process of the model's veracity prediction as a text summarization problem. Additionally, the performance of the proposed model is discussed on publicly available datasets and the findings are evaluated with related studies.
As Vision Transformers (ViTs) increasingly set new benchmarks in computer vision, their practical deployment on inference engines is often hindered by their significant memory bandwidth and (on-chip) memory footprint requirements. This paper addresses this memory limitation by introducing an activation-aware model compression methodology that uses selective low-rank weight tensor approximations of different layers to reduce the parameter count of ViTs. The key idea is to decompose the weight tensors into a sum of two parameter-efficient tensors while minimizing the error between the product of the input activations with the original weight tensor and the product of the input activations with the approximate tensor sum. This approximation is further refined by adopting an efficient layer-wise error compensation technique that uses the gradient of the layer's output loss. The combination of these techniques achieves excellent results while it avoids being trapped in a shallow local minimum early in the optimization process and strikes a good balance between the model compression and output accuracy. Notably, the presented method significantly reduces the parameter count of DeiT-B by 60% with less than 1% accuracy drop on the ImageNet dataset, overcoming the usual accuracy degradation seen in low-rank approximations. In addition to this, the presented compression technique can compress large DeiT/ViT models to have about the same model size as smaller DeiT/ViT variants while yielding up to 1.8% accuracy gain. These results highlight the efficacy of our approach, presenting a viable solution for embedding ViTs in memory-constrained environments without compromising their performance.
Although Score Distillation Sampling (SDS) has exhibited remarkable performance in conditional 3D content generation, a comprehensive understanding of its formulation is still lacking, hindering the development of 3D generation. In this work, we decompose SDS as a combination of three functional components, namely mode-seeking, mode-disengaging and variance-reducing terms, analyzing the properties of each. We show that problems such as over-smoothness and implausibility result from the intrinsic deficiency of the first two terms and propose a more advanced variance-reducing term than that introduced by SDS. Based on the analysis, we propose a simple yet effective approach named Stable Score Distillation (SSD) which strategically orchestrates each term for high-quality 3D generation and can be readily incorporated to various 3D generation frameworks and 3D representations. Extensive experiments validate the efficacy of our approach, demonstrating its ability to generate high-fidelity 3D content without succumbing to issues such as over-smoothness.
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust. Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model. We argue that such supervisions lack semantic information and interpretability. To address this issues, in this paper, we propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation. Since text annotations are not available in current deepfakes datasets, VLFFD first generates the mixed forgery image with corresponding fine-grained prompts via Prompt Forgery Image Generator (PFIG). Then, the fine-grained mixed data and coarse-grained original data and is jointly trained with the Coarse-and-Fine Co-training framework (C2F), enabling the model to gain more generalization and interpretability. The experiments show the proposed method improves the existing detection models on several challenging benchmarks. Furthermore, we have integrated our method with multimodal large models, achieving noteworthy results that demonstrate the potential of our approach. This integration not only enhances the performance of our VLFFD paradigm but also underscores the versatility and adaptability of our method when combined with advanced multimodal technologies, highlighting its potential in tackling the evolving challenges of deepfake detection.
Existing Large Language Models (LLMs) usually remain static after deployment, which might make it hard to inject new knowledge into the model. We aim to build models containing a considerable portion of self-updatable parameters, enabling the model to integrate new knowledge effectively and efficiently. To this end, we introduce MEMORYLLM, a model that comprises a transformer and a fixed-size memory pool within the latent space of the transformer. MEMORYLLM can self-update with text knowledge and memorize the knowledge injected earlier. Our evaluations demonstrate the ability of MEMORYLLM to effectively incorporate new knowledge, as evidenced by its performance on model editing benchmarks. Meanwhile, the model exhibits long-term information retention capacity, which is validated through our custom-designed evaluations and long-context benchmarks. MEMORYLLM also shows operational integrity without any sign of performance degradation even after nearly a million memory updates.
Data plays a fundamental role in the training of Large Language Models (LLMs). Effective data management, particularly in the formulation of a well-suited training dataset, holds significance for enhancing model performance and improving training efficiency during pretraining and supervised fine-tuning phases. Despite the considerable importance of data management, the current research community still falls short in providing a systematic analysis of the rationale behind management strategy selection, its consequential effects, methodologies for evaluating curated datasets, and the ongoing pursuit of improved strategies. Consequently, the exploration of data management has attracted more and more attention among the research community. This survey provides a comprehensive overview of current research in data management within both the pretraining and supervised fine-tuning stages of LLMs, covering various noteworthy aspects of data management strategy design: data quantity, data quality, domain/task composition, etc. Looking toward the future, we extrapolate existing challenges and outline promising directions for development in this field. Therefore, this survey serves as a guiding resource for practitioners aspiring to construct powerful LLMs through effective data management practices. The collection of the latest papers is available at //github.com/ZigeW/data_management_LLM.
Besides entity-centric knowledge, usually organized as Knowledge Graph (KG), events are also an essential kind of knowledge in the world, which trigger the spring up of event-centric knowledge representation form like Event KG (EKG). It plays an increasingly important role in many machine learning and artificial intelligence applications, such as intelligent search, question-answering, recommendation, and text generation. This paper provides a comprehensive survey of EKG from history, ontology, instance, and application views. Specifically, to characterize EKG thoroughly, we focus on its history, definitions, schema induction, acquisition, related representative graphs/systems, and applications. The development processes and trends are studied therein. We further summarize perspective directions to facilitate future research on EKG.
Generative Adversarial Networks (GANs) can produce images of surprising complexity and realism, but are generally modeled to sample from a single latent source ignoring the explicit spatial interaction between multiple entities that could be present in a scene. Capturing such complex interactions between different objects in the world, including their relative scaling, spatial layout, occlusion, or viewpoint transformation is a challenging problem. In this work, we propose to model object composition in a GAN framework as a self-consistent composition-decomposition network. Our model is conditioned on the object images from their marginal distributions to generate a realistic image from their joint distribution by explicitly learning the possible interactions. We evaluate our model through qualitative experiments and user evaluations in both the scenarios when either paired or unpaired examples for the individual object images and the joint scenes are given during training. Our results reveal that the learned model captures potential interactions between the two object domains given as input to output new instances of composed scene at test time in a reasonable fashion.