亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Language models influence the external world: they query APIs that read and write to web pages, generate content that shapes human behavior, and run system commands as autonomous agents. These interactions form feedback loops: LLM outputs affect the world, which in turn affect subsequent LLM outputs. In this work, we show that feedback loops can cause in-context reward hacking (ICRH), where the LLM at test-time optimizes a (potentially implicit) objective but creates negative side effects in the process. For example, consider an LLM agent deployed to increase Twitter engagement; the LLM may retrieve its previous tweets into the context window and make them more controversial, increasing engagement but also toxicity. We identify and study two processes that lead to ICRH: output-refinement and policy-refinement. For these processes, evaluations on static datasets are insufficient -- they miss the feedback effects and thus cannot capture the most harmful behavior. In response, we provide three recommendations for evaluation to capture more instances of ICRH. As AI development accelerates, the effects of feedback loops will proliferate, increasing the need to understand their role in shaping LLM behavior.

相關內容

大(da)語(yu)言模(mo)型(xing)是(shi)基于海量(liang)(liang)文(wen)本(ben)數(shu)據訓練的(de)深(shen)(shen)度學(xue)習模(mo)型(xing)。它(ta)不(bu)(bu)僅能(neng)(neng)夠(gou)生成(cheng)自(zi)(zi)然(ran)語(yu)言文(wen)本(ben),還能(neng)(neng)夠(gou)深(shen)(shen)入(ru)理解文(wen)本(ben)含義(yi),處(chu)理各種(zhong)自(zi)(zi)然(ran)語(yu)言任務(wu),如文(wen)本(ben)摘(zhai)要、問答(da)、翻譯(yi)等。2023年,大(da)語(yu)言模(mo)型(xing)及其(qi)在人(ren)工智能(neng)(neng)領域的(de)應用(yong)已(yi)成(cheng)為全(quan)球科技研究的(de)熱點,其(qi)在規模(mo)上的(de)增長尤為引(yin)人(ren)注目,參數(shu)量(liang)(liang)已(yi)從(cong)最(zui)初的(de)十幾億躍升到如今的(de)一萬億。參數(shu)量(liang)(liang)的(de)提(ti)升使得模(mo)型(xing)能(neng)(neng)夠(gou)更(geng)加精細(xi)地(di)捕捉人(ren)類語(yu)言微妙之處(chu),更(geng)加深(shen)(shen)入(ru)地(di)理解人(ren)類語(yu)言的(de)復雜性。在過去(qu)的(de)一年里,大(da)語(yu)言模(mo)型(xing)在吸納(na)新知(zhi)識(shi)、分(fen)解復雜任務(wu)以及圖文(wen)對齊等多方(fang)面都有顯著(zhu)提(ti)升。隨著(zhu)技術的(de)不(bu)(bu)斷(duan)成(cheng)熟,它(ta)將(jiang)不(bu)(bu)斷(duan)拓展其(qi)應用(yong)范(fan)圍,為人(ren)類提(ti)供更(geng)加智能(neng)(neng)化和(he)(he)個性化的(de)服(fu)務(wu),進一步(bu)改善人(ren)們(men)的(de)生活和(he)(he)生產方(fang)式(shi)。

Image generators are gaining vast amount of popularity and have rapidly changed how digital content is created. With the latest AI technology, millions of high quality images are being generated by the public, which are constantly motivating the research community to push the limits of generative models to create more complex and realistic images. This paper focuses on Cross-Domain Image Retrieval (CDIR) which can be used as an additional tool to inspect collections of generated images by determining the level of similarity between images in a dataset. An ideal retrieval system would be able to generalize to unseen complex images from multiple domains (e.g., photos, drawings and paintings). To address this goal, we propose a novel caption-matching approach that leverages multimodal language-vision architectures pre-trained on large datasets. The method is tested on DomainNet and Office-Home datasets and consistently achieves state-of-the-art performance over the latest approaches in the literature for cross-domain image retrieval. In order to verify the effectiveness with AI-generated images, the method was also put to test with a database composed by samples collected from Midjourney, which is a widely used generative platform for content creation.

Event linking connects event mentions in text with relevant nodes in a knowledge base (KB). Prior research in event linking has mainly borrowed methods from entity linking, overlooking the distinct features of events. Compared to the extensively explored entity linking task, events have more complex structures and can be more effectively distinguished by examining their associated arguments. Moreover, the information-rich nature of events leads to the scarcity of event KBs. This emphasizes the need for event linking models to identify and classify event mentions not in the KB as ``out-of-KB,'' an area that has received limited attention. In this work, we tackle these challenges by introducing an argument-aware approach. First, we improve event linking models by augmenting input text with tagged event argument information, facilitating the recognition of key information about event mentions. Subsequently, to help the model handle ``out-of-KB'' scenarios, we synthesize out-of-KB training examples from in-KB instances through controlled manipulation of event arguments. Our experiment across two test datasets showed significant enhancements in both in-KB and out-of-KB scenarios, with a notable 22% improvement in out-of-KB evaluations.

The proliferation of online misinformation has posed significant threats to public interest. While numerous online users actively participate in the combat against misinformation, many of such responses can be characterized by the lack of politeness and supporting facts. As a solution, text generation approaches are proposed to automatically produce counter-misinformation responses. Nevertheless, existing methods are often trained end-to-end without leveraging external knowledge, resulting in subpar text quality and excessively repetitive responses. In this paper, we propose retrieval augmented response generation for online misinformation (RARG), which collects supporting evidence from scientific sources and generates counter-misinformation responses based on the evidences. In particular, our RARG consists of two stages: (1) evidence collection, where we design a retrieval pipeline to retrieve and rerank evidence documents using a database comprising over 1M academic articles; (2) response generation, in which we align large language models (LLMs) to generate evidence-based responses via reinforcement learning from human feedback (RLHF). We propose a reward function to maximize the utilization of the retrieved evidence while maintaining the quality of the generated text, which yields polite and factual responses that clearly refutes misinformation. To demonstrate the effectiveness of our method, we study the case of COVID-19 and perform extensive experiments with both in- and cross-domain datasets, where RARG consistently outperforms baselines by generating high-quality counter-misinformation responses.

Incorporating item content information into click-through rate (CTR) prediction models remains a challenge, especially with the time and space constraints of industrial scenarios. The content-encoding paradigm, which integrates user and item encoders directly into CTR models, prioritizes space over time. In contrast, the embedding-based paradigm transforms item and user semantics into latent embeddings, subsequently caching them to optimize processing time at the expense of space. In this paper, we introduce a new semantic-token paradigm and propose a discrete semantic tokenization approach, namely UIST, for user and item representation. UIST facilitates swift training and inference while maintaining a conservative memory footprint. Specifically, UIST quantizes dense embedding vectors into discrete tokens with shorter lengths and employs a hierarchical mixture inference module to weigh the contribution of each user--item token pair. Our experimental results on news recommendation showcase the effectiveness and efficiency (about 200-fold space compression) of UIST for CTR prediction.

Multiview clustering (MVC) segregates data samples into meaningful clusters by synthesizing information across multiple views. Moreover, deep learning-based methods have demonstrated their strong feature learning capabilities in MVC scenarios. However, effectively generalizing feature representations while maintaining consistency is still an intractable problem. In addition, most existing deep clustering methods based on contrastive learning overlook the consistency of the clustering representations during the clustering process. In this paper, we show how the above problems can be overcome and propose a consistent enhancement-based deep MVC method via contrastive learning (CCEC). Specifically, semantic connection blocks are incorporated into a feature representation to preserve the consistent information among multiple views. Furthermore, the representation process for clustering is enhanced through spectral clustering, and the consistency across multiple views is improved. Experiments conducted on five datasets demonstrate the effectiveness and superiority of our method in comparison with the state-of-the-art (SOTA) methods. The code for this method can be accessed at //anonymous.4open.science/r/CCEC-E84E/.

NSFW (Not Safe for Work) content, in the context of a dialogue, can have severe side effects on users in open-domain dialogue systems. However, research on detecting NSFW language, especially sexually explicit content, within a dialogue context has significantly lagged behind. To address this issue, we introduce CensorChat, a dialogue monitoring dataset aimed at NSFW dialogue detection. Leveraging knowledge distillation techniques involving GPT-4 and ChatGPT, this dataset offers a cost-effective means of constructing NSFW content detectors. The process entails collecting real-life human-machine interaction data and breaking it down into single utterances and single-turn dialogues, with the chatbot delivering the final utterance. ChatGPT is employed to annotate unlabeled data, serving as a training set. Rationale validation and test sets are constructed using ChatGPT and GPT-4 as annotators, with a self-criticism strategy for resolving discrepancies in labeling. A BERT model is fine-tuned as a text classifier on pseudo-labeled data, and its performance is assessed. The study emphasizes the importance of AI systems prioritizing user safety and well-being in digital conversations while respecting freedom of expression. The proposed approach not only advances NSFW content detection but also aligns with evolving user protection needs in AI-driven dialogues.

The lack of transparency of Deep Neural Networks continues to be a limitation that severely undermines their reliability and usage in high-stakes applications. Promising approaches to overcome such limitations are Prototype-Based Self-Explainable Neural Networks (PSENNs), whose predictions rely on the similarity between the input at hand and a set of prototypical representations of the output classes, offering therefore a deep, yet transparent-by-design, architecture. So far, such models have been designed by considering pointwise estimates for the prototypes, which remain fixed after the learning phase of the model. In this paper, we introduce a probabilistic reformulation of PSENNs, called Prob-PSENN, which replaces point estimates for the prototypes with probability distributions over their values. This provides not only a more flexible framework for an end-to-end learning of prototypes, but can also capture the explanatory uncertainty of the model, which is a missing feature in previous approaches. In addition, since the prototypes determine both the explanation and the prediction, Prob-PSENNs allow us to detect when the model is making uninformed or uncertain predictions, and to obtain valid explanations for them. Our experiments demonstrate that Prob-PSENNs provide more meaningful and robust explanations than their non-probabilistic counterparts, thus enhancing the explainability and reliability of the models.

Graph Neural Networks (GNNs) have recently been used for node and graph classification tasks with great success, but GNNs model dependencies among the attributes of nearby neighboring nodes rather than dependencies among observed node labels. In this work, we consider the task of inductive node classification using GNNs in supervised and semi-supervised settings, with the goal of incorporating label dependencies. Because current GNNs are not universal (i.e., most-expressive) graph representations, we propose a general collective learning approach to increase the representation power of any existing GNN. Our framework combines ideas from collective classification with self-supervised learning, and uses a Monte Carlo approach to sampling embeddings for inductive learning across graphs. We evaluate performance on five real-world network datasets and demonstrate consistent, significant improvement in node classification accuracy, for a variety of state-of-the-art GNNs.

For better user experience and business effectiveness, Click-Through Rate (CTR) prediction has been one of the most important tasks in E-commerce. Although extensive CTR prediction models have been proposed, learning good representation of items from multimodal features is still less investigated, considering an item in E-commerce usually contains multiple heterogeneous modalities. Previous works either concatenate the multiple modality features, that is equivalent to giving a fixed importance weight to each modality; or learn dynamic weights of different modalities for different items through technique like attention mechanism. However, a problem is that there usually exists common redundant information across multiple modalities. The dynamic weights of different modalities computed by using the redundant information may not correctly reflect the different importance of each modality. To address this, we explore the complementarity and redundancy of modalities by considering modality-specific and modality-invariant features differently. We propose a novel Multimodal Adversarial Representation Network (MARN) for the CTR prediction task. A multimodal attention network first calculates the weights of multiple modalities for each item according to its modality-specific features. Then a multimodal adversarial network learns modality-invariant representations where a double-discriminators strategy is introduced. Finally, we achieve the multimodal item representations by combining both modality-specific and modality-invariant representations. We conduct extensive experiments on both public and industrial datasets, and the proposed method consistently achieves remarkable improvements to the state-of-the-art methods. Moreover, the approach has been deployed in an operational E-commerce system and online A/B testing further demonstrates the effectiveness.

Medical image segmentation requires consensus ground truth segmentations to be derived from multiple expert annotations. A novel approach is proposed that obtains consensus segmentations from experts using graph cuts (GC) and semi supervised learning (SSL). Popular approaches use iterative Expectation Maximization (EM) to estimate the final annotation and quantify annotator's performance. Such techniques pose the risk of getting trapped in local minima. We propose a self consistency (SC) score to quantify annotator consistency using low level image features. SSL is used to predict missing annotations by considering global features and local image consistency. The SC score also serves as the penalty cost in a second order Markov random field (MRF) cost function optimized using graph cuts to derive the final consensus label. Graph cut obtains a global maximum without an iterative procedure. Experimental results on synthetic images, real data of Crohn's disease patients and retinal images show our final segmentation to be accurate and more consistent than competing methods.

北京阿比特科技有限公司