In recent years, there has been an explosion of research into developing more robust deep neural networks against adversarial examples. Adversarial training appears as one of the most successful methods. To deal with both the robustness against adversarial examples and the accuracy over clean examples, many works develop enhanced adversarial training methods to achieve various trade-offs between them. Leveraging over the studies that smoothed update on weights during training may help find flat minima and improve generalization, we suggest reconciling the robustness-accuracy trade-off from another perspective, i.e., by adding random noise into deterministic weights. The randomized weights enable our design of a novel adversarial training method via Taylor expansion of a small Gaussian noise, and we show that the new adversarial training method can flatten loss landscape and find flat minima. With PGD, CW, and Auto Attacks, an extensive set of experiments demonstrate that our method enhances the state-of-the-art adversarial training methods, boosting both robustness and clean accuracy. The code is available at //github.com/Alexkael/Randomized-Adversarial-Training.
The relevance of determinacy coefficients as indicators for the validity of factor score predictors has regularly been emphasized. Previous simulation studies revealed biased determinacy coefficients for factor score predictors based on categorical variables. Therefore, and because there are different possibilities to compute determinacy coefficients, the present study compared bias of determinacy coefficients for the best linear factor score predictor and for a correlation-preserving factor score predictor based on confirmatory factor models with observed variables with 2, 4, 6, and 8 categories and maximum likelihood estimation, diagonally weighted least squares estimation, and Bayesian estimation. Positive bias was found when data were based on variables with two categories, population factors were correlated, and when there were unmodeled cross-loadings. Based on the results, the correction for sampling error, the use of maximum likelihood or Bayesian parameters, and data with at least four categories are recommended to avoid overestimation of parameter-based determinacy coefficients.
Large-scale pre-trained language models have shown outstanding performance in a variety of NLP tasks. However, they are also known to be significantly brittle against specifically crafted adversarial examples, leading to increasing interest in probing the adversarial robustness of NLP systems. We introduce RSMI, a novel two-stage framework that combines randomized smoothing (RS) with masked inference (MI) to improve the adversarial robustness of NLP systems. RS transforms a classifier into a smoothed classifier to obtain robust representations, whereas MI forces a model to exploit the surrounding context of a masked token in an input sequence. RSMI improves adversarial robustness by 2 to 3 times over existing state-of-the-art methods on benchmark datasets. We also perform in-depth qualitative analysis to validate the effectiveness of the different stages of RSMI and probe the impact of its components through extensive ablations. By empirically proving the stability of RSMI, we put it forward as a practical method to robustly train large-scale NLP models. Our code and datasets are available at //github.com/Han8931/rsmi_nlp
This work concerns the development of deep networks that are certifiably robust to adversarial attacks. Joint robust classification-detection was recently introduced as a certified defense mechanism, where adversarial examples are either correctly classified or assigned to the "abstain" class. In this work, we show that such a provable framework can benefit by extension to networks with multiple explicit abstain classes, where the adversarial examples are adaptively assigned to those. We show that naively adding multiple abstain classes can lead to "model degeneracy", then we propose a regularization approach and a training method to counter this degeneracy by promoting full use of the multiple abstain classes. Our experiments demonstrate that the proposed approach consistently achieves favorable standard vs. robust verified accuracy tradeoffs, outperforming state-of-the-art algorithms for various choices of number of abstain classes.
We propose a federated learning (FL) in stratosphere (FLSTRA) system, where a high altitude platform station (HAPS) facilitates a large number of terrestrial clients to collaboratively learn a global model without sharing the training data. FLSTRA overcomes the challenges faced by FL in terrestrial networks, such as slow convergence and high communication delay due to limited client participation and multi-hop communications. HAPS leverages its altitude and size to allow the participation of more clients with line-of-sight (LOS) links and the placement of a powerful server. However, handling many clients at once introduces computing and transmission delays. Thus, we aim to obtain a delay-accuracy trade-off for FLSTRA. Specifically, we first develop a joint client selection and resource allocation algorithm for uplink and downlink to minimize the FL delay subject to the energy and quality-of-service (QoS) constraints. Second, we propose a communication and computation resource-aware (CCRA-FL) algorithm to achieve the target FL accuracy while deriving an upper bound for its convergence rate. The formulated problem is non-convex; thus, we propose an iterative algorithm to solve it. Simulation results demonstrate the effectiveness of the proposed FLSTRA system, compared to terrestrial benchmarks, in terms of FL delay and accuracy.
While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.
Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.
The prevalence of networked sensors and actuators in many real-world systems such as smart buildings, factories, power plants, and data centers generate substantial amounts of multivariate time series data for these systems. The rich sensor data can be continuously monitored for intrusion events through anomaly detection. However, conventional threshold-based anomaly detection methods are inadequate due to the dynamic complexities of these systems, while supervised machine learning methods are unable to exploit the large amounts of data due to the lack of labeled data. On the other hand, current unsupervised machine learning approaches have not fully exploited the spatial-temporal correlation and other dependencies amongst the multiple variables (sensors/actuators) in the system for detecting anomalies. In this work, we propose an unsupervised multivariate anomaly detection method based on Generative Adversarial Networks (GANs). Instead of treating each data stream independently, our proposed MAD-GAN framework considers the entire variable set concurrently to capture the latent interactions amongst the variables. We also fully exploit both the generator and discriminator produced by the GAN, using a novel anomaly score called DR-score to detect anomalies by discrimination and reconstruction. We have tested our proposed MAD-GAN using two recent datasets collected from real-world CPS: the Secure Water Treatment (SWaT) and the Water Distribution (WADI) datasets. Our experimental results showed that the proposed MAD-GAN is effective in reporting anomalies caused by various cyber-intrusions compared in these complex real-world systems.
Adversarial attacks to image classification systems present challenges to convolutional networks and opportunities for understanding them. This study suggests that adversarial perturbations on images lead to noise in the features constructed by these networks. Motivated by this observation, we develop new network architectures that increase adversarial robustness by performing feature denoising. Specifically, our networks contain blocks that denoise the features using non-local means or other filters; the entire networks are trained end-to-end. When combined with adversarial training, our feature denoising networks substantially improve the state-of-the-art in adversarial robustness in both white-box and black-box attack settings. On ImageNet, under 10-iteration PGD white-box attacks where prior art has 27.9% accuracy, our method achieves 55.7%; even under extreme 2000-iteration PGD white-box attacks, our method secures 42.6% accuracy. A network based on our method was ranked first in Competition on Adversarial Attacks and Defenses (CAAD) 2018 --- it achieved 50.6% classification accuracy on a secret, ImageNet-like test dataset against 48 unknown attackers, surpassing the runner-up approach by ~10%. Code and models will be made publicly available.
Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.
We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan