The dynamics of the power system are described by a system of differential-algebraic equations. Time-domain simulations are used to understand the evolution of the system dynamics. These simulations can be computationally expensive due to the stiffness of the system which requires the use of finely discretized time-steps. By increasing the allowable time-step size, we aim to accelerate such simulations. In this paper, we use the observation that even though the individual components are described using both algebraic and differential equations, their coupling only involves algebraic equations. Following this observation, we use Neural Networks (NNs) to approximate the components' state evolution, leading to fast, accurate, and numerically stable approximators, which enable larger time-steps. To account for effects of the network on the components and vice-versa, the NNs take the temporal evolution of the coupling algebraic variables as an input for their prediction. We initially estimate this temporal evolution and then update it in an iterative fashion using the Newton-Raphson algorithm. The involved Jacobian matrix is calculated with Automatic Differentiation and its size depends only on the network size but not on the component dynamics. We demonstrate this NN-based simulator on the IEEE 9-bus test case with 3 generators.
Deep learning models have seen significant successes in numerous applications, but their inner workings remain elusive. The purpose of this work is to quantify the learning process of deep neural networks through the lens of a novel topological invariant called magnitude. Magnitude is an isometry invariant; its properties are an active area of research as it encodes many known invariants of a metric space. We use magnitude to study the internal representations of neural networks and propose a new method for determining their generalisation capabilities. Moreover, we theoretically connect magnitude dimension and the generalisation error, and demonstrate experimentally that the proposed framework can be a good indicator of the latter.
The study of partial differential equations (PDE) through the framework of deep learning emerged a few years ago leading to the impressive approximations of simple dynamics. Graph neural networks (GNN) turned out to be very useful in those tasks by allowing the treatment of unstructured data often encountered in the field of numerical resolutions of PDE. However, the resolutions of harder PDE such as Navier-Stokes equations are still a challenging task and most of the work done on the latter concentrate either on simulating the flow around simple geometries or on qualitative results that looks physical for design purpose. In this study, we try to leverage the work done on deep learning for PDE and GNN by proposing an adaptation of a known architecture in order to tackle the task of approximating the solution of the two-dimensional steady-state incompressible Navier-Stokes equations over different airfoil geometries. In addition to that, we test our model not only on its performance over the volume but also on its performance to approximate surface quantities such as the wall shear stress or the isostatic pressure leading to the inference of global coefficients such as the lift and the drag of our airfoil in order to allow design exploration. This work takes place in a longer project that aims to approximate three dimensional steady-state solutions over industrial geometries.
Quantitative notions of bisimulation are well-known tools for the minimization of dynamical models such as Markov chains and ordinary differential equations (ODEs). In \emph{forward bisimulations}, each state in the quotient model represents an equivalence class and the dynamical evolution gives the overall sum of its members in the original model. Here we introduce generalized forward bisimulation (GFB) for dynamical systems over commutative monoids and develop a partition refinement algorithm to compute the coarsest one. When the monoid is $(\mathbb{R}, +)$, we recover probabilistic bisimulation for Markov chains and more recent forward bisimulations for nonlinear ODEs. Using $(\mathbb{R}, \cdot)$ we get nonlinear reductions for discrete-time dynamical systems and ODEs where each variable in the quotient model represents the product of original variables in the equivalence class. When the domain is a finite set such as the Booleans $\mathbb{B}$, we can apply GFB to Boolean networks (BN), a widely used dynamical model in computational biology. Using a prototype implementation of our minimization algorithm for GFB, we find disjunction- and conjunction-preserving reductions on 60 BN from two well-known repositories, and demonstrate the obtained analysis speed-ups. We also provide the biological interpretation of the reduction obtained for two selected BN, and we show how GFB enables the analysis of a large one that could not be analyzed otherwise. Using a randomized version of our algorithm we find product-preserving (therefore non-linear) reductions on 21 dynamical weighted networks from the literature that could not be handled by the exact algorithm.
This paper explores the difficulties in solving partial differential equations (PDEs) using physics-informed neural networks (PINNs). PINNs use physics as a regularization term in the objective function. However, a drawback of this approach is the requirement for manual hyperparameter tuning, making it impractical in the absence of validation data or prior knowledge of the solution. Our investigations of the loss landscapes and backpropagated gradients in the presence of physics reveal that existing methods produce non-convex loss landscapes that are hard to navigate. Our findings demonstrate that high-order PDEs contaminate backpropagated gradients and hinder convergence. To address these challenges, we introduce a novel method that bypasses the calculation of high-order derivative operators and mitigates the contamination of backpropagated gradients. Consequently, we reduce the dimension of the search space and make learning PDEs with non-smooth solutions feasible. Our method also provides a mechanism to focus on complex regions of the domain. Besides, we present a dual unconstrained formulation based on Lagrange multiplier method to enforce equality constraints on the model's prediction, with adaptive and independent learning rates inspired by adaptive subgradient methods. We apply our approach to solve various linear and non-linear PDEs.
Many real-world systems modeled using differential equations involve unknown or uncertain parameters. Standard approaches to address parameter estimation inverse problems in this setting typically focus on estimating constants; yet some unobservable system parameters may vary with time without known evolution models. In this work, we propose a novel approximation method inspired by the Fourier series to estimate time-varying parameters in deterministic dynamical systems modeled with ordinary differential equations. Using ensemble Kalman filtering in conjunction with Fourier series-based approximation models, we detail two possible implementation schemes for sequentially updating the time-varying parameter estimates given noisy observations of the system states. We demonstrate the capabilities of the proposed approach in estimating periodic parameters, both when the period is known and unknown, as well as non-periodic time-varying parameters of different forms with several computed examples using a forced harmonic oscillator. Results emphasize the importance of the frequencies and number of approximation model terms on the time-varying parameter estimates and corresponding dynamical system predictions.
For terminal value problems of fractional differential equations of order $\alpha \in (0,1)$ that use Caputo derivatives, shooting methods are a well developed and investigated approach. Based on recently established analytic properties of such problems, we develop a new technique to select the required initial values that solves such shooting problems quickly and accurately. Numerical experiments indicate that this new proportional secting technique converges very quickly and accurately to the solution. Run time measurements indicate a speedup factor of between 4 and 10 when compared to the standard bisection method.
Discovering the governing equations of evolving systems from available observations is essential and challenging. In this paper, we consider a new scenario: discovering governing equations from streaming data. Current methods struggle to discover governing differential equations with considering measurements as a whole, leading to failure to handle this task. We propose an online modeling method capable of handling samples one by one sequentially by modeling streaming data instead of processing the entire dataset. The proposed method performs well in discovering ordinary differential equations (ODEs) and partial differential equations (PDEs) from streaming data. Evolving systems are changing over time, which invariably changes with system status. Thus, finding the exact change points is critical. The measurement generated from a changed system is distributed dissimilarly to before; hence, the difference can be identified by the proposed method. Our proposal is competitive in identifying the change points and discovering governing differential equations in three hybrid systems and two switching linear systems.
We study the computational scalability of a Gaussian process (GP) framework for solving general nonlinear partial differential equations (PDEs). This framework transforms solving PDEs to solving quadratic optimization problem with nonlinear constraints. Its complexity bottleneck lies in computing with dense kernel matrices obtained from pointwise evaluations of the covariance kernel of the GP and its partial derivatives at collocation points. We present a sparse Cholesky factorization algorithm for such kernel matrices based on the near-sparsity of the Cholesky factor under a new ordering of Diracs and derivative measurements. We rigorously identify the sparsity pattern and quantify the exponentially convergent accuracy of the corresponding Vecchia approximation of the GP, which is optimal in the Kullback-Leibler divergence. This enables us to compute $\epsilon$-approximate inverse Cholesky factors of the kernel matrices with complexity $O(N\log^d(N/\epsilon))$ in space and $O(N\log^{2d}(N/\epsilon))$ in time. With the sparse factors, gradient-based optimization methods become scalable. Furthermore, we can use the oftentimes more efficient Gauss-Newton method, for which we apply the conjugate gradient algorithm with the sparse factor of a reduced kernel matrix as a preconditioner to solve the linear system. We numerically illustrate our algorithm's near-linear space/time complexity for a broad class of nonlinear PDEs such as the nonlinear elliptic, Burgers, and Monge-Amp\`ere equations. In summary, we provide a fast, scalable, and accurate method for solving general PDEs with GPs.
The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.
This paper aims at revisiting Graph Convolutional Neural Networks by bridging the gap between spectral and spatial design of graph convolutions. We theoretically demonstrate some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain. The obtained general framework allows to lead a spectral analysis of the most popular ConvGNNs, explaining their performance and showing their limits. Moreover, the proposed framework is used to design new convolutions in spectral domain with a custom frequency profile while applying them in the spatial domain. We also propose a generalization of the depthwise separable convolution framework for graph convolutional networks, what allows to decrease the total number of trainable parameters by keeping the capacity of the model. To the best of our knowledge, such a framework has never been used in the GNNs literature. Our proposals are evaluated on both transductive and inductive graph learning problems. Obtained results show the relevance of the proposed method and provide one of the first experimental evidence of transferability of spectral filter coefficients from one graph to another. Our source codes are publicly available at: //github.com/balcilar/Spectral-Designed-Graph-Convolutions