In this work, we show that simultaneously training and mixing neural networks is a promising way to conduct Neural Architecture Search (NAS). For hyperparameter optimization, reusing the partially trained weights allows for efficient search, as was previously demonstrated by the Population Based Training (PBT) algorithm. We propose PBT-NAS, an adaptation of PBT to NAS where architectures are improved during training by replacing poorly-performing networks in a population with the result of mixing well-performing ones and inheriting the weights using the shrink-perturb technique. After PBT-NAS terminates, the created networks can be directly used without retraining. PBT-NAS is highly parallelizable and effective: on challenging tasks (image generation and reinforcement learning) PBT-NAS achieves superior performance compared to baselines (random search and mutation-based PBT).
In this work, we develop a novel efficient quadrature and sparse grid based polynomial interpolation method to price American options with multiple underlying assets. The approach is based on first formulating the pricing of American options using dynamic programming, and then employing static sparse grids to interpolate the continuation value function at each time step. To achieve high efficiency, we first transform the domain from $\mathbb{R}^d$ to $(-1,1)^d$ via a scaled tanh map, and then remove the boundary singularity of the resulting multivariate function over $(-1,1)^d$ by a bubble function and simultaneously, to significantly reduce the number of interpolation points. We rigorously establish that with a proper choice of the bubble function, the resulting function has bounded mixed derivatives up to a certain order, which provides theoretical underpinnings for the use of sparse grids. Numerical experiments for American arithmetic and geometric basket put options with the number of underlying assets up to 16 are presented to validate the effectiveness of the approach.
The Metaverse is a new paradigm that aims to create a virtual environment consisting of numerous worlds, each of which will offer a different set of services. To deal with such a dynamic and complex scenario, considering the stringent quality of service requirements aimed at the 6th generation of communication systems (6G), one potential approach is to adopt self-sustaining strategies, which can be realized by employing Adaptive Artificial Intelligence (Adaptive AI) where models are continually re-trained with new data and conditions. One aspect of self-sustainability is the management of multiple access to the frequency spectrum. Although several innovative methods have been proposed to address this challenge, mostly using Deep Reinforcement Learning (DRL), the problem of adapting agents to a non-stationary environment has not yet been precisely addressed. This paper fills in the gap in the current literature by investigating the problem of multiple access in multi-channel environments to maximize the throughput of the intelligent agent when the number of active User Equipments (UEs) may fluctuate over time. To solve the problem, a Double Deep Q-Learning (DDQL) technique empowered by Continual Learning (CL) is proposed to overcome the non-stationary situation, while the environment is unknown. Numerical simulations demonstrate that, compared to other well-known methods, the CL-DDQL algorithm achieves significantly higher throughputs with a considerably shorter convergence time in highly dynamic scenarios.
In this study, we utilize the emerging Physics Informed Neural Networks (PINNs) approach for the first time to predict the flow field of a compressor cascade. Different from conventional training methods, a new adaptive learning strategy that mitigates gradient imbalance through incorporating adaptive weights in conjunction with dynamically adjusting learning rate is used during the training process to improve the convergence of PINNs. The performance of PINNs is assessed here by solving both the forward and inverse problems. In the forward problem, by encapsulating the physical relations among relevant variables, PINNs demonstrate their effectiveness in accurately forecasting the compressor's flow field. PINNs also show obvious advantages over the traditional CFD approaches, particularly in scenarios lacking complete boundary conditions, as is often the case in inverse engineering problems. PINNs successfully reconstruct the flow field of the compressor cascade solely based on partial velocity vectors and near-wall pressure information. Furthermore, PINNs show robust performance in the environment of various levels of aleatory uncertainties stemming from labeled data. This research provides evidence that PINNs can offer turbomachinery designers an additional and promising option alongside the current dominant CFD methods.
In this work we present CppFlow - a novel and performant planner for the Cartesian Path Planning problem, which finds valid trajectories up to 129x faster than current methods, while also succeeding on more difficult problems where others fail. At the core of the proposed algorithm is the use of a learned, generative Inverse Kinematics solver, which is able to efficiently produce promising entire candidate solution trajectories on the GPU. Precise, valid solutions are then found through classical approaches such as differentiable programming, global search, and optimization. In combining approaches from these two paradigms we get the best of both worlds - efficient approximate solutions from generative AI which are made exact using the guarantees of traditional planning and optimization. We evaluate our system against other state of the art methods on a set of established baselines as well as new ones introduced in this work and find that our method significantly outperforms others in terms of the time to find a valid solution and planning success rate, and performs comparably in terms of trajectory length over time. The work is made open source and available for use upon acceptance.
With the rapid development of AI technology, we have witnessed numerous innovations and conveniences. However, along with these advancements come privacy threats and risks. Fully Homomorphic Encryption (FHE) emerges as a key technology for privacy-preserving computation, enabling computations while maintaining data privacy. Nevertheless, FHE has limitations in processing continuous non-polynomial functions as it is restricted to discrete integers and supports only addition and multiplication. Spiking Neural Networks (SNNs) operate on discrete spike signals, naturally aligning with the properties of FHE. In this paper, we present a framework called FHE-DiCSNN. This framework is based on the efficient TFHE scheme and leverages the discrete properties of SNNs to achieve high prediction performance on ciphertexts. Firstly, by employing bootstrapping techniques, we successfully implement computations of the Leaky Integrate-and-Fire neuron model on ciphertexts. Through bootstrapping, we can facilitate computations for SNNs of arbitrary depth. This framework can be extended to other spiking neuron models, providing a novel framework for the homomorphic evaluation of SNNs. Secondly, inspired by CNNs, we adopt convolutional methods to replace Poisson encoding. This not only enhances accuracy but also mitigates the issue of prolonged simulation time caused by random encoding. Furthermore, we employ engineering techniques to parallelize the computation of bootstrapping, resulting in a significant improvement in computational efficiency. Finally, we evaluate our model on the MNIST dataset. Experimental results demonstrate that, with the optimal parameter configuration, FHE-DiCSNN achieves an accuracy of 97.94% on ciphertexts, with a loss of only 0.53% compared to the original network's accuracy of 98.47%. Moreover, each prediction requires only 0.75 seconds of computation time
In this work, we explore the use of Large Language Models (LLMs) for knowledge engineering tasks in the context of the ISWC 2023 LM-KBC Challenge. For this task, given subject and relation pairs sourced from Wikidata, we utilize pre-trained LLMs to produce the relevant objects in string format and link them to their respective Wikidata QIDs. We developed a pipeline using LLMs for Knowledge Engineering (LLMKE), combining knowledge probing and Wikidata entity mapping. The method achieved a macro-averaged F1-score of 0.701 across the properties, with the scores varying from 1.00 to 0.328. These results demonstrate that the knowledge of LLMs varies significantly depending on the domain and that further experimentation is required to determine the circumstances under which LLMs can be used for automatic Knowledge Base (e.g., Wikidata) completion and correction. The investigation of the results also suggests the promising contribution of LLMs in collaborative knowledge engineering. LLMKE won Track 2 of the challenge. The implementation is available at //github.com/bohuizhang/LLMKE.
In this work, we propose to utilize a variational autoencoder (VAE) for channel estimation (CE) in underdetermined (UD) systems. The basis of the method forms a recently proposed concept in which a VAE is trained on channel state information (CSI) data and used to parameterize an approximation to the mean squared error (MSE)-optimal estimator. The contributions in this work extend the existing framework from fully-determined (FD) to UD systems, which are of high practical relevance. Particularly noteworthy is the extension of the estimator variant, which does not require perfect CSI during its offline training phase. This is a significant advantage compared to most other deep learning (DL)-based CE methods, where perfect CSI during the training phase is a crucial prerequisite. Numerical simulations for hybrid and wideband systems demonstrate the excellent performance of the proposed methods compared to related estimators.
We show that the ability of a neural network to integrate information from diverse sources hinges critically on being exposed to properly correlated signals during the early phases of training. Interfering with the learning process during this initial stage can permanently impair the development of a skill, both in artificial and biological systems where the phenomenon is known as a critical learning period. We show that critical periods arise from the complex and unstable early transient dynamics, which are decisive of final performance of the trained system and their learned representations. This evidence challenges the view, engendered by analysis of wide and shallow networks, that early learning dynamics of neural networks are simple, akin to those of a linear model. Indeed, we show that even deep linear networks exhibit critical learning periods for multi-source integration, while shallow networks do not. To better understand how the internal representations change according to disturbances or sensory deficits, we introduce a new measure of source sensitivity, which allows us to track the inhibition and integration of sources during training. Our analysis of inhibition suggests cross-source reconstruction as a natural auxiliary training objective, and indeed we show that architectures trained with cross-sensor reconstruction objectives are remarkably more resilient to critical periods. Our findings suggest that the recent success in self-supervised multi-modal training compared to previous supervised efforts may be in part due to more robust learning dynamics and not solely due to better architectures and/or more data.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.