亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The proliferation of insecure Internet-connected devices gave rise to the IoT botnets which can grow very large rapidly and may perform high-impact cyber-attacks. The related studies for tackling IoT botnets are concerned with either capturing or analyzing IoT botnet samples, using honeypots and sandboxes, respectively. The lack of integration between the two implies that the samples captured by the honeypots must be manually submitted for analysis in sandboxes, introducing a delay during which a botnet may change its operation. Furthermore, the effectiveness of the proposed sandboxes is limited by the potential use of anti-analysis techniques and the inability to identify features for effective detection and identification of IoT botnets. In this paper, we propose and evaluate a novel framework, the IoT-BDA framework, for automated capturing, analysis, identification, and reporting of IoT botnets. The framework consists of honeypots integrated with a novel sandbox that supports a wider range of hardware and software configurations, and can identify indicators of compromise and attack, along with anti-analysis, persistence, and anti-forensics techniques. These features can make botnet detection and analysis, and infection remedy more effective. The framework reports the findings to a blacklist and abuse service to facilitate botnet suspension. The paper also describes the discovered anti-honeypot techniques and the measures applied to reduce the risk of honeypot detection. Over the period of seven months, the framework captured, analyzed, and reported 4077 unique IoT botnet samples. The analysis results show that some IoT botnets used anti-analysis, persistence, and anti-forensics techniques typically seen in traditional botnets.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

As the number of IoT devices has increased rapidly, IoT botnets have exploited the vulnerabilities of IoT devices. However, it is still challenging to detect the initial intrusion on IoT devices prior to massive attacks. Recent studies have utilized power side-channel information to identify this intrusion behavior on IoT devices but still lack accurate models in real-time for ubiquitous botnet detection. We proposed the first online intrusion detection system called DeepAuditor for IoT devices via power auditing. To develop the real-time system, we proposed a lightweight power auditing device called Power Auditor. We also designed a distributed CNN classifier for online inference in a laboratory setting. In order to protect data leakage and reduce networking redundancy, we then proposed a privacy-preserved inference protocol via Packed Homomorphic Encryption and a sliding window protocol in our system. The classification accuracy and processing time were measured, and the proposed classifier outperformed a baseline classifier, especially against unseen patterns. We also demonstrated that the distributed CNN design is secure against any distributed components. Overall, the measurements were shown to the feasibility of our real-time distributed system for intrusion detection on IoT devices.

The inclusion of Internet of Things (IoT) devices is growing rapidly in all application domains. Smart Farming supports devices connected, and with the support of Internet, cloud or edge computing infrastructure provide remote control of watering and fertilization, real time monitoring of farm conditions, and provide solutions to more sustainable practices. This could involve using irrigation systems only when the detected soil moisture level is low or stop when the plant reaches a sufficient level of soil moisture content. These improvements to efficiency and ease of use come with added risks to security and privacy. Cyber attacks in large coordinated manner can disrupt economy of agriculture-dependent nations. To the sensors in the system, an attack may appear as anomalous behaviour. In this context, there are possibilities of anomalies generated due to faulty hardware, issues in network connectivity (if present), or simply abrupt changes to the environment due to weather, human accident, or other unforeseen circumstances. To make such systems more secure, it is imperative to detect such data discrepancies, and trigger appropriate mitigation mechanisms. In this paper, we propose an anomaly detection model for Smart Farming using an unsupervised Autoencoder machine learning model. We chose to use an Autoencoder because it encodes and decodes data and attempts to ignore outliers. When it encounters anomalous data the result will be a high reconstruction loss value, signaling that this data was not like the rest. Our model was trained and tested on data collected from our designed greenhouse test-bed. Proposed Autoencoder model based anomaly detection achieved 98.98% and took 262 seconds to train and has a detection time of .0585 seconds.

Fact-checking has become increasingly important due to the speed with which both information and misinformation can spread in the modern media ecosystem. Therefore, researchers have been exploring how fact-checking can be automated, using techniques based on natural language processing, machine learning, knowledge representation, and databases to automatically predict the veracity of claims. In this paper, we survey automated fact-checking stemming from natural language processing, and discuss its connections to related tasks and disciplines. In this process, we present an overview of existing datasets and models, aiming to unify the various definitions given and identify common concepts. Finally, we highlight challenges for future research.

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.

A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.

Deep learning has been successfully applied to solve various complex problems ranging from big data analytics to computer vision and human-level control. Deep learning advances however have also been employed to create software that can cause threats to privacy, democracy and national security. One of those deep learning-powered applications recently emerged is "deepfake". Deepfake algorithms can create fake images and videos that humans cannot distinguish them from authentic ones. The proposal of technologies that can automatically detect and assess the integrity of digital visual media is therefore indispensable. This paper presents a survey of algorithms used to create deepfakes and, more importantly, methods proposed to detect deepfakes in the literature to date. We present extensive discussions on challenges, research trends and directions related to deepfake technologies. By reviewing the background of deepfakes and state-of-the-art deepfake detection methods, this study provides a comprehensive overview of deepfake techniques and facilitates the development of new and more robust methods to deal with the increasingly challenging deepfakes.

We survey research on self-driving cars published in the literature focusing on autonomous cars developed since the DARPA challenges, which are equipped with an autonomy system that can be categorized as SAE level 3 or higher. The architecture of the autonomy system of self-driving cars is typically organized into the perception system and the decision-making system. The perception system is generally divided into many subsystems responsible for tasks such as self-driving-car localization, static obstacles mapping, moving obstacles detection and tracking, road mapping, traffic signalization detection and recognition, among others. The decision-making system is commonly partitioned as well into many subsystems responsible for tasks such as route planning, path planning, behavior selection, motion planning, and control. In this survey, we present the typical architecture of the autonomy system of self-driving cars. We also review research on relevant methods for perception and decision making. Furthermore, we present a detailed description of the architecture of the autonomy system of the UFES's car, IARA. Finally, we list prominent autonomous research cars developed by technology companies and reported in the media.

It is becoming increasingly easy to automatically replace a face of one person in a video with the face of another person by using a pre-trained generative adversarial network (GAN). Recent public scandals, e.g., the faces of celebrities being swapped onto pornographic videos, call for automated ways to detect these Deepfake videos. To help developing such methods, in this paper, we present the first publicly available set of Deepfake videos generated from videos of VidTIMIT database. We used open source software based on GANs to create the Deepfakes, and we emphasize that training and blending parameters can significantly impact the quality of the resulted videos. To demonstrate this impact, we generated videos with low and high visual quality (320 videos each) using differently tuned parameter sets. We showed that the state of the art face recognition systems based on VGG and Facenet neural networks are vulnerable to Deepfake videos, with 85.62% and 95.00% false acceptance rates respectively, which means methods for detecting Deepfake videos are necessary. By considering several baseline approaches, we found that audio-visual approach based on lip-sync inconsistency detection was not able to distinguish Deepfake videos. The best performing method, which is based on visual quality metrics and is often used in presentation attack detection domain, resulted in 8.97% equal error rate on high quality Deepfakes. Our experiments demonstrate that GAN-generated Deepfake videos are challenging for both face recognition systems and existing detection methods, and the further development of face swapping technology will make it even more so.

This research mainly emphasizes on traffic detection thus essentially involving object detection and classification. The particular work discussed here is motivated from unsatisfactory attempts of re-using well known pre-trained object detection networks for domain specific data. In this course, some trivial issues leading to prominent performance drop are identified and ways to resolve them are discussed. For example, some simple yet relevant tricks regarding data collection and sampling prove to be very beneficial. Also, introducing a blur net to deal with blurred real time data is another important factor promoting performance elevation. We further study the neural network design issues for beneficial object classification and involve shared, region-independent convolutional features. Adaptive learning rates to deal with saddle points are also investigated and an average covariance matrix based pre-conditioned approach is proposed. We also introduce the use of optical flow features to accommodate orientation information. Experimental results demonstrate that this results in a steady rise in the performance rate.

A recent research trend has emerged to identify developers' emotions, by applying sentiment analysis to the content of communication traces left in collaborative development environments. Trying to overcome the limitations posed by using off-the-shelf sentiment analysis tools, researchers recently started to develop their own tools for the software engineering domain. In this paper, we report a benchmark study to assess the performance and reliability of three sentiment analysis tools specifically customized for software engineering. Furthermore, we offer a reflection on the open challenges, as they emerge from a qualitative analysis of misclassified texts.

北京阿比特科技有限公司