亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper studies transfer learning for estimating the mean of random functions based on discretely sampled data, where, in addition to observations from the target distribution, auxiliary samples from similar but distinct source distributions are available. The paper considers both common and independent designs and establishes the minimax rates of convergence for both designs. The results reveal an interesting phase transition phenomenon under the two designs and demonstrate the benefits of utilizing the source samples in the low sampling frequency regime. For practical applications, this paper proposes novel data-driven adaptive algorithms that attain the optimal rates of convergence within a logarithmic factor simultaneously over a large collection of parameter spaces. The theoretical findings are complemented by a simulation study that further supports the effectiveness of the proposed algorithms

相關內容

We reformulate the Lanczos tau method for the discretization of time-delay systems in terms of a pencil of operators, allowing for new insights into this approach. As a first main result, we show that, for the choice of a shifted Legendre basis, this method is equivalent to Pad\'e approximation in the frequency domain. We illustrate that Lanczos tau methods straightforwardly give rise to sparse, self nesting discretizations. Equivalence is also demonstrated with pseudospectral collocation, where the non-zero collocation points are chosen as the zeroes of orthogonal polynomials. The importance of such a choice manifests itself in the approximation of the $H^2$-norm, where, under mild conditions, super-geometric convergence is observed and, for a special case, super convergence is proved; both significantly faster than the algebraic convergence reported in previous work.

Big data, with NxP dimension where N is extremely large, has created new challenges for data analysis, particularly in the realm of creating meaningful clusters of data. Clustering techniques, such as K-means or hierarchical clustering are popular methods for performing exploratory analysis on large datasets. Unfortunately, these methods are not always possible to apply to big data due to memory or time constraints generated by calculations of order PxN(N-1). To circumvent this problem, typically, the clustering technique is applied to a random sample drawn from the dataset: however, a weakness is that the structure of the dataset, particularly at the edges, is not necessarily maintained. We propose a new solution through the concept of "data nuggets", which reduce a large dataset into a small collection of nuggets of data, each containing a center, weight, and scale parameter. The data nuggets are then input into algorithms that compute methods such as principal components analysis and clustering in a more computationally efficient manner. We show the consistency of the data nuggets-based covariance estimator and apply the methodology of data nuggets to perform exploratory analysis of a flow cytometry dataset containing over one million observations using PCA and K-means clustering for weighted observations. Supplementary materials for this article are available online.

This paper presents a novel hierarchical federated learning algorithm within multiple sets that incorporates quantization for communication-efficiency and demonstrates resilience to statistical heterogeneity. Unlike conventional hierarchical federated learning algorithms, our approach combines gradient aggregation in intra-set iterations with model aggregation in inter-set iterations. We offer a comprehensive analytical framework to evaluate its optimality gap and convergence rate, comparing these aspects with those of conventional algorithms. Additionally, we develop a problem formulation to derive optimal system parameters in a closed-form solution. Our findings reveal that our algorithm consistently achieves high learning accuracy over a range of parameters and significantly outperforms other hierarchical algorithms, particularly in scenarios with heterogeneous data distributions.

This research addresses a critical challenge in the field of generative models, particularly in the generation and evaluation of synthetic images. Given the inherent complexity of generative models and the absence of a standardized procedure for their comparison, our study introduces a pioneering algorithm to objectively assess the realism of synthetic images. This approach significantly enhances the evaluation methodology by refining the Fr\'echet Inception Distance (FID) score, allowing for a more precise and subjective assessment of image quality. Our algorithm is particularly tailored to address the challenges in generating and evaluating realistic images of Arabic handwritten digits, a task that has traditionally been near-impossible due to the subjective nature of realism in image generation. By providing a systematic and objective framework, our method not only enables the comparison of different generative models but also paves the way for improvements in their design and output. This breakthrough in evaluation and comparison is crucial for advancing the field of OCR, especially for scripts that present unique complexities, and sets a new standard in the generation and assessment of high-quality synthetic images.

We address the problem of accurately interpolating measured anechoic steering vectors with a deep learning framework called the neural field. This task plays a pivotal role in reducing the resource-intensive measurements required for precise sound source separation and localization, essential as the front-end of speech recognition. Classical approaches to interpolation rely on linear weighting of nearby measurements in space on a fixed, discrete set of frequencies. Drawing inspiration from the success of neural fields for novel view synthesis in computer vision, we introduce the neural steerer, a continuous complex-valued function that takes both frequency and direction as input and produces the corresponding steering vector. Importantly, it incorporates inter-channel phase difference information and a regularization term enforcing filter causality, essential for accurate steering vector modeling. Our experiments, conducted using a dataset of real measured steering vectors, demonstrate the effectiveness of our resolution-free model in interpolating such measurements.

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Influenced by the stunning success of deep learning in computer vision and language understanding, research in recommendation has shifted to inventing new recommender models based on neural networks. In recent years, we have witnessed significant progress in developing neural recommender models, which generalize and surpass traditional recommender models owing to the strong representation power of neural networks. In this survey paper, we conduct a systematic review on neural recommender models, aiming to summarize the field to facilitate future progress. Distinct from existing surveys that categorize existing methods based on the taxonomy of deep learning techniques, we instead summarize the field from the perspective of recommendation modeling, which could be more instructive to researchers and practitioners working on recommender systems. Specifically, we divide the work into three types based on the data they used for recommendation modeling: 1) collaborative filtering models, which leverage the key source of user-item interaction data; 2) content enriched models, which additionally utilize the side information associated with users and items, like user profile and item knowledge graph; and 3) context enriched models, which account for the contextual information associated with an interaction, such as time, location, and the past interactions. After reviewing representative works for each type, we finally discuss some promising directions in this field, including benchmarking recommender systems, graph reasoning based recommendation models, and explainable and fair recommendations for social good.

Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback. Despite many advances over the past three decades, learning in many domains still requires a large amount of interaction with the environment, which can be prohibitively expensive in realistic scenarios. To address this problem, transfer learning has been applied to reinforcement learning such that experience gained in one task can be leveraged when starting to learn the next, harder task. More recently, several lines of research have explored how tasks, or data samples themselves, can be sequenced into a curriculum for the purpose of learning a problem that may otherwise be too difficult to learn from scratch. In this article, we present a framework for curriculum learning (CL) in reinforcement learning, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals. Finally, we use our framework to find open problems and suggest directions for future RL curriculum learning research.

This paper focuses on two fundamental tasks of graph analysis: community detection and node representation learning, which capture the global and local structures of graphs, respectively. In the current literature, these two tasks are usually independently studied while they are actually highly correlated. We propose a probabilistic generative model called vGraph to learn community membership and node representation collaboratively. Specifically, we assume that each node can be represented as a mixture of communities, and each community is defined as a multinomial distribution over nodes. Both the mixing coefficients and the community distribution are parameterized by the low-dimensional representations of the nodes and communities. We designed an effective variational inference algorithm which regularizes the community membership of neighboring nodes to be similar in the latent space. Experimental results on multiple real-world graphs show that vGraph is very effective in both community detection and node representation learning, outperforming many competitive baselines in both tasks. We show that the framework of vGraph is quite flexible and can be easily extended to detect hierarchical communities.

北京阿比特科技有限公司