亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose to enhance the training of physics-informed neural networks (PINNs). To this aim, we introduce nonlinear additive and multiplicative preconditioning strategies for the widely used L-BFGS optimizer. The nonlinear preconditioners are constructed by utilizing the Schwarz domain-decomposition framework, where the parameters of the network are decomposed in a layer-wise manner. Through a series of numerical experiments, we demonstrate that both, additive and multiplicative preconditioners significantly improve the convergence of the standard L-BFGS optimizer, while providing more accurate solutions of the underlying partial differential equations. Moreover, the additive preconditioner is inherently parallel, thus giving rise to a novel approach to model parallelism.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

This study investigates the relationship between semi-supervised learning (SSL, which is training off partially labelled datasets) and open-set recognition (OSR, which is classification with simultaneous novelty detection) under the context of generative adversarial networks (GANs). Although no previous study has formally linked SSL and OSR, their respective methods share striking similarities. Specifically, SSL-GANs and OSR-GANs require their generators to produce 'bad-looking' samples which are used to regularise their classifier networks. We hypothesise that the definitions of bad-looking samples in SSL and OSR represents the same concept and realises the same goal. More formally, bad-looking samples lie in the complementary space, which is the area between and around the boundaries of the labelled categories within the classifier's embedding space. By regularising a classifier with samples in the complementary space, classifiers achieve improved generalisation for SSL and also generalise the open space for OSR. To test this hypothesis, we compare a foundational SSL-GAN with the state-of-the-art OSR-GAN under the same SSL-OSR experimental conditions. Our results find that SSL-GANs achieve near identical results to OSR-GANs, proving the SSL-OSR link. Subsequently, to further this new research path, we compare several SSL-GANs various SSL-OSR setups which this first benchmark results. A combined framework of SSL-OSR certainly improves the practicality and cost-efficiency of classifier training, and so further theoretical and application studies are also discussed.

In this work, we are interested in solving large linear systems stemming from the Extra-Membrane-Intra (EMI) model, which is employed for simulating excitable tissues at a cellular scale. After setting the related systems of partial differential equations (PDEs) equipped with proper boundary conditions, we provide numerical approximation schemes for the EMI PDEs and focus on the resulting large linear systems. We first give a relatively complete spectral analysis using tools from the theory of Generalized Locally Toeplitz matrix sequences. The obtained spectral information is used for designing appropriate (preconditioned) Krylov solvers. We show, through numerical experiments, that the presented solution strategy is robust w.r.t. problem and discretization parameters, efficient and scalable.

Deep neural networks (DNN) are singular statistical models which exhibit complex degeneracies. In this work, we illustrate how a quantity known as the \emph{learning coefficient} introduced in singular learning theory quantifies precisely the degree of degeneracy in deep neural networks. Importantly, we will demonstrate that degeneracy in DNN cannot be accounted for by simply counting the number of "flat" directions. We propose a computationally scalable approximation of a localized version of the learning coefficient using stochastic gradient Langevin dynamics. To validate our approach, we demonstrate its accuracy in low-dimensional models with known theoretical values. Importantly, the local learning coefficient can correctly recover the ordering of degeneracy between various parameter regions of interest. An experiment on MNIST shows the local learning coefficient can reveal the inductive bias of stochastic opitmizers for more or less degenerate critical points.

Sparsity is a highly desired feature in deep neural networks (DNNs) since it ensures numerical efficiency, improves the interpretability of models (due to the smaller number of relevant features), and robustness. In machine learning approaches based on linear models, it is well known that there exists a connecting path between the sparsest solution in terms of the $\ell^1$ norm (i.e., zero weights) and the non-regularized solution, which is called the regularization path. Very recently, there was a first attempt to extend the concept of regularization paths to DNNs by means of treating the empirical loss and sparsity ($\ell^1$ norm) as two conflicting criteria and solving the resulting multiobjective optimization problem. However, due to the non-smoothness of the $\ell^1$ norm and the high number of parameters, this approach is not very efficient from a computational perspective. To overcome this limitation, we present an algorithm that allows for the approximation of the entire Pareto front for the above-mentioned objectives in a very efficient manner. We present numerical examples using both deterministic and stochastic gradients. We furthermore demonstrate that knowledge of the regularization path allows for a well-generalizing network parametrization.

In this article an innovative method for training regressive MLP networks is presented, which is not subject to local minima. The Error-Back-Propagation algorithm, proposed by William-Hinton-Rummelhart, has had the merit of favouring the development of machine learning techniques, which has permeated every branch of research and technology since the mid-1980s. This extraordinary success is largely due to the black-box approach, but this same factor was also seen as a limitation, as soon more challenging problems were approached. One of the most critical aspects of the training algorithms was that of local minima of the loss function, typically the mean squared error of the output on the training set. In fact, as the most popular training algorithms are driven by the derivatives of the loss function, there is no possibility to evaluate if a reached minimum is local or global. The algorithm presented in this paper avoids the problem of local minima, as the training is based on the properties of the distribution of the training set, or better on its image internal to the neural network. The performance of the algorithm is shown for a well-known benchmark.

Deep learning techniques depend on large datasets whose annotation is time-consuming. To reduce annotation burden, the self-training (ST) and active-learning (AL) methods have been developed as well as methods that combine them in an iterative fashion. However, it remains unclear when each method is the most useful, and when it is advantageous to combine them. In this paper, we propose a new method that combines ST with AL using Test-Time Augmentations (TTA). First, TTA is performed on an initial teacher network. Then, cases for annotation are selected based on the lowest estimated Dice score. Cases with high estimated scores are used as soft pseudo-labels for ST. The selected annotated cases are trained with existing annotated cases and ST cases with border slices annotations. We demonstrate the method on MRI fetal body and placenta segmentation tasks with different data variability characteristics. Our results indicate that ST is highly effective for both tasks, boosting performance for in-distribution (ID) and out-of-distribution (OOD) data. However, while self-training improved the performance of single-sequence fetal body segmentation when combined with AL, it slightly deteriorated performance of multi-sequence placenta segmentation on ID data. AL was helpful for the high variability placenta data, but did not improve upon random selection for the single-sequence body data. For fetal body segmentation sequence transfer, combining AL with ST following ST iteration yielded a Dice of 0.961 with only 6 original scans and 2 new sequence scans. Results using only 15 high-variability placenta cases were similar to those using 50 cases. Code is available at: //github.com/Bella31/TTA-quality-estimation-ST-AL

In this paper, we introduce several geometric characterizations for strong minima of optimization problems. Applying these results to nuclear norm minimization problems allows us to obtain new necessary and sufficient quantitative conditions for this important property. Our characterizations for strong minima are weaker than the Restricted Injectivity and Nondegenerate Source Condition, which are usually used to identify solution uniqueness of nuclear norm minimization problems. Consequently, we obtain the minimum (tight) bound on the number of measurements for (strong) exact recovery of low-rank matrices.

A primary challenge of physics-informed machine learning (PIML) is its generalization beyond the training domain, especially when dealing with complex physical problems represented by partial differential equations (PDEs). This paper aims to enhance the generalization capabilities of PIML, facilitating practical, real-world applications where accurate predictions in unexplored regions are crucial. We leverage the inherent causality and temporal sequential characteristics of PDE solutions to fuse PIML models with recurrent neural architectures based on systems of ordinary differential equations, referred to as neural oscillators. Through effectively capturing long-time dependencies and mitigating the exploding and vanishing gradient problem, neural oscillators foster improved generalization in PIML tasks. Extensive experimentation involving time-dependent nonlinear PDEs and biharmonic beam equations demonstrates the efficacy of the proposed approach. Incorporating neural oscillators outperforms existing state-of-the-art methods on benchmark problems across various metrics. Consequently, the proposed method improves the generalization capabilities of PIML, providing accurate solutions for extrapolation and prediction beyond the training data.

Long-span bridges are subjected to a multitude of dynamic excitations during their lifespan. To account for their effects on the structural system, several load models are used during design to simulate the conditions the structure is likely to experience. These models are based on different simplifying assumptions and are generally guided by parameters that are stochastically identified from measurement data, making their outputs inherently uncertain. This paper presents a probabilistic physics-informed machine-learning framework based on Gaussian process regression for reconstructing dynamic forces based on measured deflections, velocities, or accelerations. The model can work with incomplete and contaminated data and offers a natural regularization approach to account for noise in the measurement system. An application of the developed framework is given by an aerodynamic analysis of the Great Belt East Bridge. The aerodynamic response is calculated numerically based on the quasi-steady model, and the underlying forces are reconstructed using sparse and noisy measurements. Results indicate a good agreement between the applied and the predicted dynamic load and can be extended to calculate global responses and the resulting internal forces. Uses of the developed framework include validation of design models and assumptions, as well as prognosis of responses to assist in damage detection and structural health monitoring.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司