While machine learning models rapidly advance the state-of-the-art on various real-world tasks, out-of-domain (OOD) generalization remains a challenging problem given the vulnerability of these models to spurious correlations. While current domain generalization methods usually focus on enforcing certain invariance properties across different domains by new loss function designs, we propose a balanced mini-batch sampling strategy to reduce the domain-specific spurious correlations in the observed training distributions. More specifically, we propose a two-phased method that 1) identifies the source of spurious correlations, and 2) builds balanced mini-batches free from spurious correlations by matching on the identified source. We provide an identifiability guarantee of the source of spuriousness and show that our proposed approach provably samples from a balanced, spurious-free distribution over all training environments. Experiments are conducted on three computer vision datasets with documented spurious correlations, demonstrating empirically that our balanced mini-batch sampling strategy improves the performance of four different established domain generalization model baselines compared to the random mini-batch sampling strategy.
In recent past, several domain generalization (DG) methods have been proposed, showing encouraging performance, however, almost all of them build on convolutional neural networks (CNNs). There is little to no progress on studying the DG performance of vision transformers (ViTs), which are challenging the supremacy of CNNs on standard benchmarks, often built on i.i.d assumption. This renders the real-world deployment of ViTs doubtful. In this paper, we attempt to explore ViTs towards addressing the DG problem. Similar to CNNs, ViTs also struggle in out-of-distribution scenarios and the main culprit is overfitting to source domains. Inspired by the modular architecture of ViTs, we propose a simple DG approach for ViTs, coined as self-distillation for ViTs. It reduces the overfitting to source domains by easing the learning of input-output mapping problem through curating non-zero entropy supervisory signals for intermediate transformer blocks. Further, it does not introduce any new parameters and can be seamlessly plugged into the modular composition of different ViTs. We empirically demonstrate notable performance gains with different DG baselines and various ViT backbones in five challenging datasets. Moreover, we report favorable performance against recent state-of-the-art DG methods. Our code along with pre-trained models are publicly available at: //github.com/maryam089/SDViT
Adaptation to out-of-distribution data is a meta-challenge for all statistical learning algorithms that strongly rely on the i.i.d. assumption. It leads to unavoidable labor costs and confidence crises in realistic applications. For that, domain generalization aims at mining domain-irrelevant knowledge from multiple source domains that can generalize to unseen target domains. In this paper, by leveraging the frequency domain of an image, we uniquely work with two key observations: (i) the high-frequency information of an image depicts object edge structure, which preserves high-level semantic information of the object is naturally consistent across different domains, and (ii) the low-frequency component retains object smooth structure, while this information is susceptible to domain shifts. Motivated by the above observations, we introduce (i) an encoder-decoder structure to disentangle high- and low-frequency feature of an image, (ii) an information interaction mechanism to ensure the helpful knowledge from both two parts can cooperate effectively, and (iii) a novel data augmentation technique that works on the frequency domain to encourage the robustness of frequency-wise feature disentangling. The proposed method obtains state-of-the-art performance on three widely used domain generalization benchmarks (Digit-DG, Office-Home, and PACS).
The availability of large labeled datasets is the key component for the success of deep learning. However, annotating labels on large datasets is generally time-consuming and expensive. Active learning is a research area that addresses the issues of expensive labeling by selecting the most important samples for labeling. Diversity-based sampling algorithms are known as integral components of representation-based approaches for active learning. In this paper, we introduce a new diversity-based initial dataset selection algorithm to select the most informative set of samples for initial labeling in the active learning setting. Self-supervised representation learning is used to consider the diversity of samples in the initial dataset selection algorithm. Also, we propose a novel active learning query strategy, which uses diversity-based sampling on consistency-based embeddings. By considering the consistency information with the diversity in the consistency-based embedding scheme, the proposed method could select more informative samples for labeling in the semi-supervised learning setting. Comparative experiments show that the proposed method achieves compelling results on CIFAR-10 and Caltech-101 datasets compared with previous active learning approaches by utilizing the diversity of unlabeled data.
Causal effect estimation from observational data is a challenging problem, especially with high dimensional data and in the presence of unobserved variables. The available data-driven methods for tackling the problem either provide an estimation of the bounds of a causal effect (i.e. nonunique estimation) or have low efficiency. The major hurdle for achieving high efficiency while trying to obtain unique and unbiased causal effect estimation is how to find a proper adjustment set for confounding control in a fast way, given the huge covariate space and considering unobserved variables. In this paper, we approach the problem as a local search task for finding valid adjustment sets in data. We establish the theorems to support the local search for adjustment sets, and we show that unique and unbiased estimation can be achieved from observational data even when there exist unobserved variables. We then propose a data-driven algorithm that is fast and consistent under mild assumptions. We also make use of a frequent pattern mining method to further speed up the search of minimal adjustment sets for causal effect estimation. Experiments conducted on extensive synthetic and real-world datasets demonstrate that the proposed algorithm outperforms the state-of-the-art criteria/estimators in both accuracy and time-efficiency.
Invariant risk minimization (IRM) has recently emerged as a promising alternative for domain generalization. Nevertheless, the loss function is difficult to optimize for nonlinear classifiers and the original optimization objective could fail when pseudo-invariant features and geometric skews exist. Inspired by IRM, in this paper we propose a novel formulation for domain generalization, dubbed invariant information bottleneck (IIB). IIB aims at minimizing invariant risks for nonlinear classifiers and simultaneously mitigating the impact of pseudo-invariant features and geometric skews. Specifically, we first present a novel formulation for invariant causal prediction via mutual information. Then we adopt the variational formulation of the mutual information to develop a tractable loss function for nonlinear classifiers. To overcome the failure modes of IRM, we propose to minimize the mutual information between the inputs and the corresponding representations. IIB significantly outperforms IRM on synthetic datasets, where the pseudo-invariant features and geometric skews occur, showing the effectiveness of proposed formulation in overcoming failure modes of IRM. Furthermore, experiments on DomainBed show that IIB outperforms $13$ baselines by $0.9\%$ on average across $7$ real datasets.
In the domain generalization literature, a common objective is to learn representations independent of the domain after conditioning on the class label. We show that this objective is not sufficient: there exist counter-examples where a model fails to generalize to unseen domains even after satisfying class-conditional domain invariance. We formalize this observation through a structural causal model and show the importance of modeling within-class variations for generalization. Specifically, classes contain objects that characterize specific causal features, and domains can be interpreted as interventions on these objects that change non-causal features. We highlight an alternative condition: inputs across domains should have the same representation if they are derived from the same object. Based on this objective, we propose matching-based algorithms when base objects are observed (e.g., through data augmentation) and approximate the objective when objects are not observed (MatchDG). Our simple matching-based algorithms are competitive to prior work on out-of-domain accuracy for rotated MNIST, Fashion-MNIST, PACS, and Chest-Xray datasets. Our method MatchDG also recovers ground-truth object matches: on MNIST and Fashion-MNIST, top-10 matches from MatchDG have over 50% overlap with ground-truth matches.
Leveraging datasets available to learn a model with high generalization ability to unseen domains is important for computer vision, especially when the unseen domain's annotated data are unavailable. We study a novel and practical problem of Open Domain Generalization (OpenDG), which learns from different source domains to achieve high performance on an unknown target domain, where the distributions and label sets of each individual source domain and the target domain can be different. The problem can be generally applied to diverse source domains and widely applicable to real-world applications. We propose a Domain-Augmented Meta-Learning framework to learn open-domain generalizable representations. We augment domains on both feature-level by a new Dirichlet mixup and label-level by distilled soft-labeling, which complements each domain with missing classes and other domain knowledge. We conduct meta-learning over domains by designing new meta-learning tasks and losses to preserve domain unique knowledge and generalize knowledge across domains simultaneously. Experiment results on various multi-domain datasets demonstrate that the proposed Domain-Augmented Meta-Learning (DAML) outperforms prior methods for unseen domain recognition.
Invariant approaches have been remarkably successful in tackling the problem of domain generalization, where the objective is to perform inference on data distributions different from those used in training. In our work, we investigate whether it is possible to leverage domain information from the unseen test samples themselves. We propose a domain-adaptive approach consisting of two steps: a) we first learn a discriminative domain embedding from unsupervised training examples, and b) use this domain embedding as supplementary information to build a domain-adaptive model, that takes both the input as well as its domain into account while making predictions. For unseen domains, our method simply uses few unlabelled test examples to construct the domain embedding. This enables adaptive classification on any unseen domain. Our approach achieves state-of-the-art performance on various domain generalization benchmarks. In addition, we introduce the first real-world, large-scale domain generalization benchmark, Geo-YFCC, containing 1.1M samples over 40 training, 7 validation, and 15 test domains, orders of magnitude larger than prior work. We show that the existing approaches either do not scale to this dataset or underperform compared to the simple baseline of training a model on the union of data from all training domains. In contrast, our approach achieves a significant improvement.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.
Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.