The vast amounts of data collected in various domains pose great challenges to modern data exploration and analysis. To find "interesting" objects in large databases, users typically define a query using positive and negative example objects and train a classification model to identify the objects of interest in the entire data catalog. However, this approach requires a scan of all the data to apply the classification model to each instance in the data catalog, making this method prohibitively expensive to be employed in large-scale databases serving many users and queries interactively. In this work, we propose a novel framework for such search-by-classification scenarios that allows users to interactively search for target objects by specifying queries through a small set of positive and negative examples. Unlike previous approaches, our framework can rapidly answer such queries at low cost without scanning the entire database. Our framework is based on an index-aware construction scheme for decision trees and random forests that transforms the inference phase of these classification models into a set of range queries, which in turn can be efficiently executed by leveraging multidimensional indexing structures. Our experiments show that queries over large data catalogs with hundreds of millions of objects can be processed in a few seconds using a single server, compared to hours needed by classical scanning-based approaches.
Large Language Models (LLMs) have demonstrated remarkable performance in code completion. However, due to the lack of domain-specific knowledge, they may not be optimal in completing code that requires intensive domain knowledge for example completing the library names. Although there are several works that have confirmed the effectiveness of fine-tuning techniques to adapt language models for code completion in specific domains. They are limited by the need for constant fine-tuning of the model when the project is in constant iteration. To address this limitation, in this paper, we propose $k$NM-LM, a retrieval-augmented language model (R-LM), that integrates domain knowledge into language models without fine-tuning. Different from previous techniques, our approach is able to automatically adapt to different language models and domains. Specifically, it utilizes the in-domain code to build the retrieval-based database decoupled from LM, and then combines it with LM through Bayesian inference to complete the code. The extensive experiments on the completion of intra-project and intra-scenario have confirmed that $k$NM-LM brings about appreciable enhancements when compared to CodeGPT and UnixCoder. A deep analysis of our tool including the responding speed, storage usage, specific type code completion, and API invocation completion has confirmed that $k$NM-LM provides satisfactory performance, which renders it highly appropriate for domain adaptive code completion. Furthermore, our approach operates without the requirement for direct access to the language model's parameters. As a result, it can seamlessly integrate with black-box code completion models, making it easy to integrate our approach as a plugin to further enhance the performance of these models.
NSFW (Not Safe for Work) content, in the context of a dialogue, can have severe side effects on users in open-domain dialogue systems. However, research on detecting NSFW language, especially sexually explicit content, within a dialogue context has significantly lagged behind. To address this issue, we introduce CensorChat, a dialogue monitoring dataset aimed at NSFW dialogue detection. Leveraging knowledge distillation techniques involving GPT-4 and ChatGPT, this dataset offers a cost-effective means of constructing NSFW content detectors. The process entails collecting real-life human-machine interaction data and breaking it down into single utterances and single-turn dialogues, with the chatbot delivering the final utterance. ChatGPT is employed to annotate unlabeled data, serving as a training set. Rationale validation and test sets are constructed using ChatGPT and GPT-4 as annotators, with a self-criticism strategy for resolving discrepancies in labeling. A BERT model is fine-tuned as a text classifier on pseudo-labeled data, and its performance is assessed. The study emphasizes the importance of AI systems prioritizing user safety and well-being in digital conversations while respecting freedom of expression. The proposed approach not only advances NSFW content detection but also aligns with evolving user protection needs in AI-driven dialogues.
In modern commercial search engines and recommendation systems, data from multiple domains is available to jointly train the multi-domain model. Traditional methods train multi-domain models in the multi-task setting, with shared parameters to learn the similarity of multiple tasks, and task-specific parameters to learn the divergence of features, labels, and sample distributions of individual tasks. With the development of large language models, LLM can extract global domain-invariant text features that serve both search and recommendation tasks. We propose a novel framework called S\&R Multi-Domain Foundation, which uses LLM to extract domain invariant features, and Aspect Gating Fusion to merge the ID feature, domain invariant text features and task-specific heterogeneous sparse features to obtain the representations of query and item. Additionally, samples from multiple search and recommendation scenarios are trained jointly with Domain Adaptive Multi-Task module to obtain the multi-domain foundation model. We apply the S\&R Multi-Domain foundation model to cold start scenarios in the pretrain-finetune manner, which achieves better performance than other SOTA transfer learning methods. The S\&R Multi-Domain Foundation model has been successfully deployed in Alipay Mobile Application's online services, such as content query recommendation and service card recommendation, etc.
Due to the lack of wireless spectrum resources, people are focusing on the versatile wireless networks. Wireless localization and target sensing both rely on precise extraction of parameters such as signal amplitude, propagation delay and Doppler shift from the received signals. Due to the high multi-path resolution and strong penetration of UWB signals, both localization and sensing can be achieved through the same UWB waveform. Practical networks are often resource-constrained, in order to improve the accuracy of integrated networks, we need to optimize the allocation of resources in the networks. Considering the complexity of the multi-slot networks, this paper derives the Fisher Information Matrix (FIM) expressions for single-slot and dual-slot integrated sensing and localization (ISAL) networks respectively, and proposes two resource optimization schemes, namely step-by-step scheme and integrated scheme. The numerical results show that: (i) for the sensing-resource-deficient networks with relatively uniform node distribution, the energy allocated to each step in the step-by-step scheme satisfies the relationship: energy for clock offset < energy for radar localization < energy for target sensing. (ii) In the multi-slot ISAL networks, the system will allocate more energy to the time slots where the networks are relatively sensing-resource-deficient. (iii) The step-by-step scheme is more suitable for the sensing-resource-abundant networks, while the integrated scheme is more suitable for the sensing-resource-deficient networks.
Due to intelligent, adaptive nature towards various operations and their ability to provide maximum comfort to the occupants residing in them, smart buildings are becoming a pioneering area of research. Since these architectures leverage the Internet of Things (IoT), there is a need for monitoring different operations (Occupancy, Humidity, Temperature, CO2, etc.) to provide sustainable comfort to the occupants. This paper proposes a novel approach for intelligent building operations monitoring using rule-based complex event processing and query-based approaches for dynamically monitoring the different operations. Siddhi is a complex event processing engine designed for handling multiple sources of event data in real time and processing it according to predefined rules using a decision tree. Since streaming data is dynamic in nature, to keep track of different operations, we have converted the IoT data into an RDF dataset. The RDF dataset is ingested to Apache Kafka for streaming purposes and for stored data we have used the GraphDB tool that extracts information with the help of SPARQL query. Consequently, the proposed approach is also evaluated by deploying the large number of events through the Siddhi CEP engine and how efficiently they are processed in terms of time. Apart from that, a risk estimation scenario is also designed to generate alerts for end users in case any of the smart building operations need immediate attention. The output is visualized and monitored for the end user through a tableau dashboard.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.
Data transmission between two or more digital devices in industry and government demands secure and agile technology. Digital information distribution often requires deployment of Internet of Things (IoT) devices and Data Fusion techniques which have also gained popularity in both, civilian and military environments, such as, emergence of Smart Cities and Internet of Battlefield Things (IoBT). This usually requires capturing and consolidating data from multiple sources. Because datasets do not necessarily originate from identical sensors, fused data typically results in a complex Big Data problem. Due to potentially sensitive nature of IoT datasets, Blockchain technology is used to facilitate secure sharing of IoT datasets, which allows digital information to be distributed, but not copied. However, blockchain has several limitations related to complexity, scalability, and excessive energy consumption. We propose an approach to hide information (sensor signal) by transforming it to an image or an audio signal. In one of the latest attempts to the military modernization, we investigate sensor fusion approach by investigating the challenges of enabling an intelligent identification and detection operation and demonstrates the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application for specific hand gesture alert system from wearable devices.
Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.
Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.