亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The pursuit of autonomous driving technology hinges on the sophisticated integration of perception, decision-making, and control systems. Traditional approaches, both data-driven and rule-based, have been hindered by their inability to grasp the nuance of complex driving environments and the intentions of other road users. This has been a significant bottleneck, particularly in the development of common sense reasoning and nuanced scene understanding necessary for safe and reliable autonomous driving. The advent of Visual Language Models (VLM) represents a novel frontier in realizing fully autonomous vehicle driving. This report provides an exhaustive evaluation of the latest state-of-the-art VLM, \modelnamefull, and its application in autonomous driving scenarios. We explore the model's abilities to understand and reason about driving scenes, make decisions, and ultimately act in the capacity of a driver. Our comprehensive tests span from basic scene recognition to complex causal reasoning and real-time decision-making under varying conditions. Our findings reveal that \modelname demonstrates superior performance in scene understanding and causal reasoning compared to existing autonomous systems. It showcases the potential to handle out-of-distribution scenarios, recognize intentions, and make informed decisions in real driving contexts. However, challenges remain, particularly in direction discernment, traffic light recognition, vision grounding, and spatial reasoning tasks. These limitations underscore the need for further research and development. Project is now available on GitHub for interested parties to access and utilize: \url{//github.com/PJLab-ADG/GPT4V-AD-Exploration}

相關內容

Security resources are scarce, and practitioners need guidance in the effective and efficient usage of techniques and tools available in the cybersecurity industry. Two emerging tool types, Interactive Application Security Testing (IAST) and Runtime Application Self-Protection (RASP), have not been thoroughly evaluated against well-established counterparts such as Dynamic Application Security Testing (DAST) and Static Application Security Testing (SAST). The goal of this research is to aid practitioners in making informed choices about the use of Interactive Application Security Testing (IAST) and Runtime Application Self-Protection (RASP) tools through an analysis of their effectiveness and efficiency in comparison with different vulnerability detection and prevention techniques and tools. We apply IAST and RASP on OpenMRS, an open-source Java-based online application. We compare the efficiency and effectiveness of IAST and RASP with techniques applied on OpenMRS in prior work. We measure efficiency and effectiveness in terms of the number and type of vulnerabilities detected and prevented per hour. Our study shows IAST performed relatively well compared to other techniques, performing second-best in both efficiency and effectiveness. IAST detected eight Top-10 OWASP security risks compared to nine by SMPT and seven for EMPT, DAST, and SAST. IAST found more vulnerabilities than SMPT. The efficiency of IAST (2.14 VpH) is second to only EMPT (2.22 VpH). These findings imply that our study benefited from using IAST when conducting black-box security testing. In the context of a large, enterprise-scale web application such as OpenMRS, RASP does not replace vulnerability detection, while IAST is a powerful tool that complements other techniques.

Automatic program repair (APR) techniques have the potential to reduce manual efforts in uncovering and repairing program defects during the code review (CR) process. However, the limited accuracy and considerable time costs associated with existing APR approaches hinder their adoption in industrial practice. One key factor is the under-utilization of review comments, which provide valuable insights into defects and potential fixes. Recent advancements in Large Language Models (LLMs) have enhanced their ability to comprehend natural and programming languages, enabling them to generate patches based on review comments. This paper conducts a comprehensive investigation into the effective utilization of LLMs for repairing CR defects. In this study, various prompts are designed and compared across mainstream LLMs using two distinct datasets from human reviewers and automated checkers. Experimental results demonstrate a remarkable repair rate of 72.97% with the best prompt, highlighting a substantial improvement in the effectiveness and practicality of automatic repair techniques.

Every major technical invention resurfaces the dual-use dilemma -- the new technology has the potential to be used for good as well as for harm. Generative AI (GenAI) techniques, such as large language models (LLMs) and diffusion models, have shown remarkable capabilities (e.g., in-context learning, code-completion, and text-to-image generation and editing). However, GenAI can be used just as well by attackers to generate new attacks and increase the velocity and efficacy of existing attacks. This paper reports the findings of a workshop held at Google (co-organized by Stanford University and the University of Wisconsin-Madison) on the dual-use dilemma posed by GenAI. This paper is not meant to be comprehensive, but is rather an attempt to synthesize some of the interesting findings from the workshop. We discuss short-term and long-term goals for the community on this topic. We hope this paper provides both a launching point for a discussion on this important topic as well as interesting problems that the research community can work to address.

We study the problem of screening in decision-making processes under uncertainty, focusing on the impact of adding an additional screening stage, commonly known as a 'gatekeeper.' While our primary analysis is rooted in the context of job market hiring, the principles and findings are broadly applicable to areas such as educational admissions, healthcare patient selection, and financial loan approvals. The gatekeeper's role is to assess applicants' suitability before significant investments are made. Our study reveals that while gatekeepers are designed to streamline the selection process by filtering out less likely candidates, they can sometimes inadvertently affect the candidates' own decision-making process. We explore the conditions under which the introduction of a gatekeeper can enhance or impede the efficiency of these processes. Additionally, we consider how adjusting gatekeeping strategies might impact the accuracy of selection decisions. Our research also extends to scenarios where gatekeeping is influenced by historical biases, particularly in competitive settings like hiring. We discover that candidates confronted with a statistically biased gatekeeping process are more likely to withdraw from applying, thereby perpetuating the previously mentioned historical biases. The study suggests that measures such as affirmative action can be effective in addressing these biases. While centered on hiring, the insights and methodologies from our study have significant implications for a wide range of fields where screening and gatekeeping are integral.

The effectiveness of advertising in e-commerce largely depends on the ability of merchants to bid on and win impressions for their targeted users. The bidding procedure is highly complex due to various factors such as market competition, user behavior, and the diverse objectives of advertisers. In this paper we consider the problem at the level of user timelines instead of individual bid requests, manipulating full policies (i.e. pre-defined bidding strategies) and not bid values. In order to optimally allocate policies to users, typical multiple treatments allocation methods solve knapsack-like problems which aim at maximizing an expected value under constraints. In the industrial contexts such as online advertising, we argue that optimizing for the probability of success is a more suited objective than expected value maximization, and we introduce the SuccessProbaMax algorithm that aims at finding the policy allocation which is the most likely to outperform a fixed reference policy. Finally, we conduct comprehensive experiments both on synthetic and real-world data to evaluate its performance. The results demonstrate that our proposed algorithm outperforms conventional expected-value maximization algorithms in terms of success rate.

The rapid development of deep learning has made a great progress in segmentation, one of the fundamental tasks of computer vision. However, the current segmentation algorithms mostly rely on the availability of pixel-level annotations, which are often expensive, tedious, and laborious. To alleviate this burden, the past years have witnessed an increasing attention in building label-efficient, deep-learning-based segmentation algorithms. This paper offers a comprehensive review on label-efficient segmentation methods. To this end, we first develop a taxonomy to organize these methods according to the supervision provided by different types of weak labels (including no supervision, coarse supervision, incomplete supervision and noisy supervision) and supplemented by the types of segmentation problems (including semantic segmentation, instance segmentation and panoptic segmentation). Next, we summarize the existing label-efficient segmentation methods from a unified perspective that discusses an important question: how to bridge the gap between weak supervision and dense prediction -- the current methods are mostly based on heuristic priors, such as cross-pixel similarity, cross-label constraint, cross-view consistency, cross-image relation, etc. Finally, we share our opinions about the future research directions for label-efficient deep segmentation.

Influenced by the stunning success of deep learning in computer vision and language understanding, research in recommendation has shifted to inventing new recommender models based on neural networks. In recent years, we have witnessed significant progress in developing neural recommender models, which generalize and surpass traditional recommender models owing to the strong representation power of neural networks. In this survey paper, we conduct a systematic review on neural recommender models, aiming to summarize the field to facilitate future progress. Distinct from existing surveys that categorize existing methods based on the taxonomy of deep learning techniques, we instead summarize the field from the perspective of recommendation modeling, which could be more instructive to researchers and practitioners working on recommender systems. Specifically, we divide the work into three types based on the data they used for recommendation modeling: 1) collaborative filtering models, which leverage the key source of user-item interaction data; 2) content enriched models, which additionally utilize the side information associated with users and items, like user profile and item knowledge graph; and 3) context enriched models, which account for the contextual information associated with an interaction, such as time, location, and the past interactions. After reviewing representative works for each type, we finally discuss some promising directions in this field, including benchmarking recommender systems, graph reasoning based recommendation models, and explainable and fair recommendations for social good.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

Since DARPA Grand Challenges (rural) in 2004/05 and Urban Challenges in 2007, autonomous driving has been the most active field of AI applications. Almost at the same time, deep learning has made breakthrough by several pioneers, three of them (also called fathers of deep learning), Hinton, Bengio and LeCun, won ACM Turin Award in 2019. This is a survey of autonomous driving technologies with deep learning methods. We investigate the major fields of self-driving systems, such as perception, mapping and localization, prediction, planning and control, simulation, V2X and safety etc. Due to the limited space, we focus the analysis on several key areas, i.e. 2D and 3D object detection in perception, depth estimation from cameras, multiple sensor fusion on the data, feature and task level respectively, behavior modelling and prediction of vehicle driving and pedestrian trajectories.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

北京阿比特科技有限公司