亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Regular ring lattices (RRLs) are defined as peculiar undirected circulant graphs constructed from a cycle graph, wherein each node is connected to pairs of neighbors that are spaced progressively in terms of vertex degree. This kind of network topology is extensively adopted in several graph-based distributed scalable protocols and their spectral properties often play a central role in the determination of convergence rates for such algorithms. In this work, basic properties of RRL graphs and the eigenvalues of the corresponding Laplacian and Randi\'{c} matrices are investigated. A deep characterization for the spectra of these matrices is given and their relation with the Dirichlet kernel is illustrated. Consequently, the Fiedler value of such a network topology is found analytically. With regard to RRLs, properties on the bounds for the spectral radius of the Laplacian matrix and the essential spectral radius of the Randi\'{c} matrix are also provided, proposing interesting conjectures on the latter quantities.

相關內容

Consider sample covariance matrices of the form $Q:=\Sigma^{1/2} X X^\top \Sigma^{1/2}$, where $X=(x_{ij})$ is an $n\times N$ random matrix whose entries are independent random variables with mean zero and variance $N^{-1}$, and $\Sigma$ is a deterministic positive-definite covariance matrix. We study the limiting behavior of the eigenvectors of $Q$ through the so-called eigenvector empirical spectral distribution $F_{\mathbf v}$, which is an alternative form of empirical spectral distribution with weights given by $|\mathbf v^\top \xi_k|^2$, where $\mathbf v$ is a deterministic unit vector and $\xi_k$ are the eigenvectors of $Q$. We prove a functional central limit theorem for the linear spectral statistics of $F_{\mathbf v}$, indexed by functions with H\"older continuous derivatives. We show that the linear spectral statistics converge to some Gaussian processes both on global scales of order 1 and on local scales that are much smaller than 1 but much larger than the typical eigenvalue spacing $N^{-1}$. Moreover, we give explicit expressions for the covariance functions of the Gaussian processes, where the exact dependence on $\Sigma$ and $\mathbf v$ is identified for the first time in the literature.

We consider the point-to-point lossy coding for computing and channel coding problems with two-sided information. We first unify these problems by considering a new generalized problem. Then we develop graph-based characterizations and derive interesting reductions through explicit graph operations, which reduce the number of decision variables. After that, we design alternating optimization algorithms for the unified problems, so that numerical computations for both the source and channel problems are covered. With the help of extra root-finding techniques, proper multiplier update strategies are developed. Thus our algorithms can compute the problems for a given distortion or cost constraint and the convergence can be proved. Also, extra heuristic deflation techniques are introduced which largely reduce the computational time. Numerical results show the accuracy and efficiency of our algorithms.

Data depth has been applied as a nonparametric measurement for ranking multivariate samples. In this paper, we focus on homogeneity tests to assess whether two multivariate samples are from the same distribution. There are many data depth-based tests for this problem, but they may not be very powerful, or have unknown asymptotic distributions, or have slow convergence rates to asymptotic distributions. Given the recent development of data depth as an important measure in quality assurance, we propose three new test statistics for multivariate two-sample homogeneity tests. The proposed minimum test statistics have simple asymptotic half-normal distribution. We also discuss the generalization of the proposed tests to multiple samples. The simulation study demonstrates the superior performance of the proposed tests. The test procedure is illustrated by two real data examples.

This paper is motivated by medical studies in which the same patients with multiple sclerosis are examined at several successive visits and described by fractional anisotropy tract profiles, which can be represented as functions. Since the observations for each patient are dependent random processes, they follow a repeated measures design for functional data. To compare the results for different visits, we thus consider functional repeated measures analysis of variance. For this purpose, a pointwise test statistic is constructed by adapting the classical test statistic for one-way repeated measures analysis of variance to the functional data framework. By integrating and taking the supremum of the pointwise test statistic, we create two global test statistics. Apart from verifying the general null hypothesis on the equality of mean functions corresponding to different objects, we also propose a simple method for post hoc analysis. We illustrate the finite sample properties of permutation and bootstrap testing procedures in an extensive simulation study. Finally, we analyze a motivating real data example in detail.

Analyzing the spectral behavior of random matrices with dependency among entries is a challenging problem. The adjacency matrix of the random $d$-regular graph is a prominent example that has attracted immense interest. A crucial spectral observable is the extremal eigenvalue, which reveals useful geometric properties of the graph. According to the Alon's conjecture, which was verified by Friedman, the (nontrivial) extremal eigenvalue of the random $d$-regular graph is approximately $2\sqrt{d-1}$. In the present paper, we analyze the extremal spectrum of the random $d$-regular graph (with $d\ge 3$ fixed) equipped with random edge-weights, and precisely describe its phase transition behavior with respect to the tail of edge-weights. In addition, we establish that the extremal eigenvector is always localized, showing a sharp contrast to the unweighted case where all eigenvectors are delocalized. Our method is robust and inspired by a sparsification technique developed in the context of Erd\H{o}s-R\'{e}nyi graphs (Ganguly and Nam, '22), which can also be applied to analyze the spectrum of general random matrices whose entries are dependent.

We study the multi-objective minimum weight base problem, an abstraction of classical NP-hard combinatorial problems such as the multi-objective minimum spanning tree problem. We prove some important properties of the convex hull of the non-dominated front, such as its approximation quality and an upper bound on the number of extreme points. Using these properties, we give the first run-time analysis of the MOEA/D algorithm for this problem, an evolutionary algorithm that effectively optimizes by decomposing the objectives into single-objective components. We show that the MOEA/D, given an appropriate decomposition setting, finds all extreme points within expected fixed-parameter polynomial time in the oracle model, the parameter being the number of objectives. Experiments are conducted on random bi-objective minimum spanning tree instances, and the results agree with our theoretical findings. Furthermore, compared with a previously studied evolutionary algorithm for the problem GSEMO, MOEA/D finds all extreme points much faster across all instances.

Orienting the edges of an undirected graph such that the resulting digraph satisfies some given constraints is a classical problem in graph theory, with multiple algorithmic applications. In particular, an $st$-orientation orients each edge of the input graph such that the resulting digraph is acyclic, and it contains a single source $s$ and a single sink $t$. Computing an $st$-orientation of a graph can be done efficiently, and it finds notable applications in graph algorithms and in particular in graph drawing. On the other hand, finding an $st$-orientation with at most $k$ transitive edges is more challenging and it was recently proven to be NP-hard already when $k=0$. We strengthen this result by showing that the problem remains NP-hard even for graphs of bounded diameter, and for graphs of bounded vertex degree. These computational lower bounds naturally raise the question about which structural parameters can lead to tractable parameterizations of the problem. Our main result is a fixed-parameter tractable algorithm parameterized by treewidth.

In many practical applications including remote sensing, multi-task learning, and multi-spectrum imaging, data are described as a set of matrices sharing a common column space. We consider the joint estimation of such matrices from their noisy linear measurements. We study a convex estimator regularized by a pair of matrix norms. The measurement model corresponds to block-wise sensing and the reconstruction is possible only when the total energy is well distributed over blocks. The first norm, which is the maximum-block-Frobenius norm, favors such a solution. This condition is analogous to the notion of low-spikiness in matrix completion or column-wise sensing. The second norm, which is a tensor norm on a pair of suitable Banach spaces, induces low-rankness in the solution together with the first norm. We demonstrate that the joint estimation provides a significant gain over the individual recovery of each matrix when the number of matrices sharing a column space and the ambient dimension of the shared column space are large relative to the number of columns in each matrix. The convex estimator is cast as a semidefinite program and an efficient ADMM algorithm is derived. The empirical behavior of the convex estimator is illustrated using Monte Carlo simulations and recovery performance is compared to existing methods in the literature.

This PhD thesis contains several contributions to the field of statistical causal modeling. Statistical causal models are statistical models embedded with causal assumptions that allow for the inference and reasoning about the behavior of stochastic systems affected by external manipulation (interventions). This thesis contributes to the research areas concerning the estimation of causal effects, causal structure learning, and distributionally robust (out-of-distribution generalizing) prediction methods. We present novel and consistent linear and non-linear causal effects estimators in instrumental variable settings that employ data-dependent mean squared prediction error regularization. Our proposed estimators show, in certain settings, mean squared error improvements compared to both canonical and state-of-the-art estimators. We show that recent research on distributionally robust prediction methods has connections to well-studied estimators from econometrics. This connection leads us to prove that general K-class estimators possess distributional robustness properties. We, furthermore, propose a general framework for distributional robustness with respect to intervention-induced distributions. In this framework, we derive sufficient conditions for the identifiability of distributionally robust prediction methods and present impossibility results that show the necessity of several of these conditions. We present a new structure learning method applicable in additive noise models with directed trees as causal graphs. We prove consistency in a vanishing identifiability setup and provide a method for testing substructure hypotheses with asymptotic family-wise error control that remains valid post-selection. Finally, we present heuristic ideas for learning summary graphs of nonlinear time-series models.

Modeling multivariate time series has long been a subject that has attracted researchers from a diverse range of fields including economics, finance, and traffic. A basic assumption behind multivariate time series forecasting is that its variables depend on one another but, upon looking closely, it is fair to say that existing methods fail to fully exploit latent spatial dependencies between pairs of variables. In recent years, meanwhile, graph neural networks (GNNs) have shown high capability in handling relational dependencies. GNNs require well-defined graph structures for information propagation which means they cannot be applied directly for multivariate time series where the dependencies are not known in advance. In this paper, we propose a general graph neural network framework designed specifically for multivariate time series data. Our approach automatically extracts the uni-directed relations among variables through a graph learning module, into which external knowledge like variable attributes can be easily integrated. A novel mix-hop propagation layer and a dilated inception layer are further proposed to capture the spatial and temporal dependencies within the time series. The graph learning, graph convolution, and temporal convolution modules are jointly learned in an end-to-end framework. Experimental results show that our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets and achieves on-par performance with other approaches on two traffic datasets which provide extra structural information.

北京阿比特科技有限公司