亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Consider sample covariance matrices of the form $Q:=\Sigma^{1/2} X X^\top \Sigma^{1/2}$, where $X=(x_{ij})$ is an $n\times N$ random matrix whose entries are independent random variables with mean zero and variance $N^{-1}$, and $\Sigma$ is a deterministic positive-definite covariance matrix. We study the limiting behavior of the eigenvectors of $Q$ through the so-called eigenvector empirical spectral distribution $F_{\mathbf v}$, which is an alternative form of empirical spectral distribution with weights given by $|\mathbf v^\top \xi_k|^2$, where $\mathbf v$ is a deterministic unit vector and $\xi_k$ are the eigenvectors of $Q$. We prove a functional central limit theorem for the linear spectral statistics of $F_{\mathbf v}$, indexed by functions with H\"older continuous derivatives. We show that the linear spectral statistics converge to some Gaussian processes both on global scales of order 1 and on local scales that are much smaller than 1 but much larger than the typical eigenvalue spacing $N^{-1}$. Moreover, we give explicit expressions for the covariance functions of the Gaussian processes, where the exact dependence on $\Sigma$ and $\mathbf v$ is identified for the first time in the literature.

相關內容

Sampling from Gibbs distributions $p(x) \propto \exp(-V(x)/\varepsilon)$ and computing their log-partition function are fundamental tasks in statistics, machine learning, and statistical physics. However, while efficient algorithms are known for convex potentials $V$, the situation is much more difficult in the non-convex case, where algorithms necessarily suffer from the curse of dimensionality in the worst case. For optimization, which can be seen as a low-temperature limit of sampling, it is known that smooth functions $V$ allow faster convergence rates. Specifically, for $m$-times differentiable functions in $d$ dimensions, the optimal rate for algorithms with $n$ function evaluations is known to be $O(n^{-m/d})$, where the constant can potentially depend on $m, d$ and the function to be optimized. Hence, the curse of dimensionality can be alleviated for smooth functions at least in terms of the convergence rate. Recently, it has been shown that similarly fast rates can also be achieved with polynomial runtime $O(n^{3.5})$, where the exponent $3.5$ is independent of $m$ or $d$. Hence, it is natural to ask whether similar rates for sampling and log-partition computation are possible, and whether they can be realized in polynomial time with an exponent independent of $m$ and $d$. We show that the optimal rates for sampling and log-partition computation are sometimes equal and sometimes faster than for optimization. We then analyze various polynomial-time sampling algorithms, including an extension of a recent promising optimization approach, and find that they sometimes exhibit interesting behavior but no near-optimal rates. Our results also give further insights on the relation between sampling, log-partition, and optimization problems.

We introduce a new information-geometric structure associated with the dynamics on discrete objects such as graphs and hypergraphs. The presented setup consists of two dually flat structures built on the vertex and edge spaces, respectively. The former is the conventional duality between density and potential, e.g., the probability density and its logarithmic form induced by a convex thermodynamic function. The latter is the duality between flux and force induced by a convex and symmetric dissipation function, which drives the dynamics of the density. These two are connected topologically by the homological algebraic relation induced by the underlying discrete objects. The generalized gradient flow in this doubly dual flat structure is an extension of the gradient flows on Riemannian manifolds, which include Markov jump processes and nonlinear chemical reaction dynamics as well as the natural gradient and mirror descent. The information-geometric projections on this doubly dual flat structure lead to information-geometric extensions of the Helmholtz-Hodge decomposition and the Otto structure in $L^{2}$ Wasserstein geometry. The structure can be extended to non-gradient nonequilibrium flows, from which we also obtain the induced dually flat structure on cycle spaces. This abstract but general framework can extend the applicability of information geometry to various problems of linear and nonlinear dynamics.

The matrix factor model has drawn growing attention for its advantage in achieving two-directional dimension reduction simultaneously for matrix-structured observations. In this paper, we propose a simple iterative least squares algorithm for matrix factor models, in contrast to the Principal Component Analysis (PCA)-based methods in the literature. In detail, we first propose to estimate the latent factor matrices by projecting the observations with two deterministic weight matrices, which are chosen to diversify away the idiosyncratic components. We show that the inferences on factors are still asymptotically valid even if we overestimate both the row/column factor numbers. We then estimate the row/column loading matrices by minimizing the squared loss function under certain identifiability conditions. The resultant estimators of the loading matrices are treated as the new weight/projection matrices and thus the above update procedure can be iteratively performed until convergence. Theoretically, given the true dimensions of the factor matrices, we derive the convergence rates of the estimators for loading matrices and common components at any $s$-th step iteration. Additionally, we propose an eigenvalue-ratio method to estimate the pair of factor numbers consistently. Thorough numerical simulations are conducted to investigate the finite-sample performance of the proposed methods and two real datasets associated with financial portfolios and multinational macroeconomic indices are used to illustrate our algorithm's practical usefulness.

In many applications, it is desired to obtain extreme eigenvalues and eigenvectors of large Hermitian matrices by efficient and compact algorithms. In particular, orthogonalization-free methods are preferred for large-scale problems for finding eigenspaces of extreme eigenvalues without explicitly computing orthogonal vectors in each iteration. For the top $p$ eigenvalues, the simplest orthogonalization-free method is to find the best rank-$p$ approximation to a positive semi-definite Hermitian matrix by algorithms solving the unconstrained Burer-Monteiro formulation. We show that the nonlinear conjugate gradient method for the unconstrained Burer-Monteiro formulation is equivalent to a Riemannian conjugate gradient method on a quotient manifold with the Bures-Wasserstein metric, thus its global convergence to a stationary point can be proven. Numerical tests suggest that it is efficient for computing the largest $k$ eigenvalues for large-scale matrices if the largest $k$ eigenvalues are nearly distributed uniformly.

The behavior of the leading singular values and vectors of noisy low-rank matrices is fundamental to many statistical and scientific problems. Theoretical understanding currently derives from asymptotic analysis under one of two regimes: (1) the classical regime, with a fixed number of rows and large number of columns, or vice versa, and (2) the proportional regime, with large numbers of rows and columns, proportional to one another. This paper is concerned with the disproportional regime, where the matrix is either ``tall and narrow'' or ``short and wide'': we study sequences of matrices of size $n \times m_n$ with aspect ratio $ n/m_n \rightarrow 0$ or $n/m_n \rightarrow \infty$ as $n \rightarrow \infty$. This regime has important ``big data'' applications. Theory derived here shows that the displacement of the empirical singular values and vectors from their noise-free counterparts and the associated phase transitions -- well-known under proportional growth asymptotics -- still occur in the disproportionate setting. They must be quantified, however, on a novel scale of measurement that adjusts with the changing aspect ratio as the matrix size increases. In this setting, the top singular vectors corresponding to the longer of the two matrix dimensions are asymptotically uncorrelated with the noise-free signal.

In this paper, we establish the central limit theorem (CLT) for linear spectral statistics (LSS) of large-dimensional sample covariance matrix when the population covariance matrices are not uniformly bounded. This constitutes a nontrivial extension of the Bai-Silverstein theorem (BST) (Ann Probab 32(1):553--605, 2004), a theorem that has strongly influenced the development of high-dimensional statistics, especially in the applications of random matrix theory to statistics. Recently there has been a growing realization that the assumption of uniform boundedness of the population covariance matrices in BST is not satisfied in some fields, such as economics, where the variances of principal components could diverge as the dimension tends to infinity. Therefore, in this paper, we aim to eliminate the obstacles to the applications of BST. Our new CLT accommodates the spiked eigenvalues, which may either be bounded or tend to infinity. A distinguishing feature of our result is that the variance in the new CLT is related to both spiked eigenvalues and bulk eigenvalues, with dominance being determined by the divergence rate of the largest spiked eigenvalue. The new CLT for LSS is then applied to test the hypothesis that the population covariance matrix is the identity matrix or a generalized spiked model. The asymptotic distributions for the corrected likelihood ratio test statistic and corrected Nagao's trace test statistic are derived under the alternative hypothesis. Moreover, we provide power comparisons between the two LSSs and Roy's largest root test under certain hypotheses. In particular, we demonstrate that except for the case where the number of spikes is equal to 1, the LSSs may exhibit higher power than Roy's largest root test in certain scenarios.

We propose a spectral clustering algorithm for analyzing the dependence structure of multivariate extremes. More specifically, we focus on the asymptotic dependence of multivariate extremes characterized by the angular or spectral measure in extreme value theory. Our work studies the theoretical performance of spectral clustering based on a random $k$-nearest neighbor graph constructed from an extremal sample, i.e., the angular part of random vectors for which the radius exceeds a large threshold. In particular, we derive the asymptotic distribution of extremes arising from a linear factor model and prove that, under certain conditions, spectral clustering can consistently identify the clusters of extremes arising in this model. Leveraging this result we propose a simple consistent estimation strategy for learning the angular measure. Our theoretical findings are complemented with numerical experiments illustrating the finite sample performance of our methods.

We are interested in creating statistical methods to provide informative summaries of random fields through the geometry of their excursion sets. To this end, we introduce an estimator for the length of the perimeter of excursion sets of random fields on $\mathbb{R}^2$ observed over regular square tilings. The proposed estimator acts on the empirically accessible binary digital images of the excursion regions and computes the length of a piecewise linear approximation of the excursion boundary. The estimator is shown to be consistent as the pixel size decreases, without the need of any normalization constant, and with neither assumption of Gaussianity nor isotropy imposed on the underlying random field. In this general framework, even when the domain grows to cover $\mathbb{R}^2$, the estimation error is shown to be of smaller order than the side length of the domain. For affine, strongly mixing random fields, this translates to a multivariate Central Limit Theorem for our estimator when multiple levels are considered simultaneously. Finally, we conduct several numerical studies to investigate statistical properties of the proposed estimator in the finite-sample data setting.

This paper investigates a general family of models that stratifies the space of covariance matrices by eigenvalue multiplicity. This family, coined Stratified Principal Component Analysis (SPCA), includes in particular Probabilistic PCA (PPCA) models, where the noise component is assumed to be isotropic. We provide an explicit maximum likelihood and a geometric characterization relying on flag manifolds. A key outcome of this analysis is that PPCA's parsimony (with respect to the full covariance model) is due to the eigenvalue-equality constraint in the noise space and the subsequent inference of a multidimensional eigenspace. The sequential nature of flag manifolds enables to extend this constraint to the signal space and bring more parsimonious models. Moreover, the stratification and the induced partial order on SPCA yield efficient model selection heuristics. Experiments on simulated and real datasets substantiate the interest of equalising adjacent sample eigenvalues when the gaps are small and the number of samples is limited. They notably demonstrate that SPCA models achieve a better complexity/goodness-of-fit tradeoff than PPCA.

We study a class of nonlinear nonlocal conservation laws with discontinuous flux, modeling crowd dynamics and traffic flow, without any additional conditions on finiteness/discreteness of the set of discontinuities or on the monotonicity of the kernel/the discontinuous coefficient. Strong compactness of the Godunov and Lax-Friedrichs type approximations is proved, providing the existence of entropy solutions. A proof of the uniqueness of the adapted entropy solutions is provided, establishing the convergence of the entire sequence of finite volume approximations to the adapted entropy solution. As per the current literature, this is the first well-posedness result for the aforesaid class and connects the theory of nonlocal conservation laws (with discontinuous flux), with its local counterpart in a generic setup. Some numerical examples are presented to display the performance of the schemes and explore the limiting behavior of these nonlocal conservation laws to their local counterparts.

北京阿比特科技有限公司