Reinforcement-learning agents seek to maximize a reward signal through environmental interactions. As humans, our contribution to the learning process is through designing the reward function. Like programmers, we have a behavior in mind and have to translate it into a formal specification, namely rewards. In this work, we consider the reward-design problem in tasks formulated as reaching desirable states and avoiding undesirable states. To start, we propose a strict partial ordering of the policy space. We prefer policies that reach the good states faster and with higher probability while avoiding the bad states longer. Next, we propose an environment-independent tiered reward structure and show it is guaranteed to induce policies that are Pareto-optimal according to our preference relation. Finally, we empirically evaluate tiered reward functions on several environments and show they induce desired behavior and lead to fast learning.
Offline reinforcement learning (RL) aims to find an optimal policy for sequential decision-making using a pre-collected dataset, without further interaction with the environment. Recent theoretical progress has focused on developing sample-efficient offline RL algorithms with various relaxed assumptions on data coverage and function approximators, especially to handle the case with excessively large state-action spaces. Among them, the framework based on the linear-programming (LP) reformulation of Markov decision processes has shown promise: it enables sample-efficient offline RL with function approximation, under only partial data coverage and realizability assumptions on the function classes, with favorable computational tractability. In this work, we revisit the LP framework for offline RL, and provide a new reformulation that advances the existing results in several aspects, relaxing certain assumptions and achieving optimal statistical rates in terms of sample size. Our key enabler is to introduce proper constraints in the reformulation, instead of using any regularization as in the literature, also with careful choices of the function classes and initial state distributions. We hope our insights bring into light the use of LP formulations and the induced primal-dual minimax optimization, in offline RL.
Counterfactual interventions are a powerful tool to explain the decisions of a black-box decision process and to enable algorithmic recourse. They are a sequence of actions that, if performed by a user, can overturn an unfavourable decision made by an automated decision system. However, most of the current methods provide interventions without considering the user's preferences. In this work, we propose a shift of paradigm by providing a novel formalization which considers the user as an active part of the process rather than a mere target. Following the preference elicitation setting, we introduce the first human-in-the-loop approach to perform algorithmic recourse. We also present a polynomial procedure to ask questions which maximize the Expected Utility of Selection (EUS), a measure of the utility of the choice set that accounts for the uncertainty with respect to both the model and the user response. We use it to iteratively refine our cost estimates in a Bayesian fashion. We integrate this preference elicitation strategy into a reinforcement learning agent coupled with Monte Carlo Tree Search for the efficient exploration, so as to provide personalized interventions achieving algorithmic recourse. An experimental evaluation of synthetic and real-world datasets shows that a handful of queries allows for achieving a substantial reduction in the cost of interventions with respect to user-independent alternatives.
Goal-conditioned reinforcement learning (GCRL) refers to learning general-purpose skills which aim to reach diverse goals. In particular, offline GCRL only requires purely pre-collected datasets to perform training tasks without additional interactions with the environment. Although offline GCRL has become increasingly prevalent and many previous works have demonstrated its empirical success, the theoretical understanding of efficient offline GCRL algorithms is not well established, especially when the state space is huge and the offline dataset only covers the policy we aim to learn. In this paper, we propose a novel provably efficient algorithm (the sample complexity is $\tilde{O}({\rm poly}(1/\epsilon))$ where $\epsilon$ is the desired suboptimality of the learned policy) with general function approximation. Our algorithm only requires nearly minimal assumptions of the dataset (single-policy concentrability) and the function class (realizability). Moreover, our algorithm consists of two uninterleaved optimization steps, which we refer to as $V$-learning and policy learning, and is computationally stable since it does not involve minimax optimization. To the best of our knowledge, this is the first algorithm with general function approximation and single-policy concentrability that is both statistically efficient and computationally stable.
Neural Networks (NNs) have been successfully employed to represent the state evolution of complex dynamical systems. Such models, referred to as NN dynamic models (NNDMs), use iterative noisy predictions of NN to estimate a distribution of system trajectories over time. Despite their accuracy, safety analysis of NNDMs is known to be a challenging problem and remains largely unexplored. To address this issue, in this paper, we introduce a method of providing safety guarantees for NNDMs. Our approach is based on stochastic barrier functions, whose relation with safety are analogous to that of Lyapunov functions with stability. We first show a method of synthesizing stochastic barrier functions for NNDMs via a convex optimization problem, which in turn provides a lower bound on the system's safety probability. A key step in our method is the employment of the recent convex approximation results for NNs to find piece-wise linear bounds, which allow the formulation of the barrier function synthesis problem as a sum-of-squares optimization program. If the obtained safety probability is above the desired threshold, the system is certified. Otherwise, we introduce a method of generating controls for the system that robustly maximizes the safety probability in a minimally-invasive manner. We exploit the convexity property of the barrier function to formulate the optimal control synthesis problem as a linear program. Experimental results illustrate the efficacy of the method. Namely, they show that the method can scale to multi-dimensional NNDMs with multiple layers and hundreds of neurons per layer, and that the controller can significantly improve the safety probability.
We study the problem of optimizing a recommender system for outcomes that occur over several weeks or months. We begin by drawing on reinforcement learning to formulate a comprehensive model of users' recurring relationships with a recommender system. Measurement, attribution, and coordination challenges complicate algorithm design. We describe careful modeling -- including a new representation of user state and key conditional independence assumptions -- which overcomes these challenges and leads to simple, testable recommender system prototypes. We apply our approach to a podcast recommender system that makes personalized recommendations to hundreds of millions of listeners. A/B tests demonstrate that purposefully optimizing for long-term outcomes leads to large performance gains over conventional approaches that optimize for short-term proxies.
Monte Carlo Tree Search (MCTS) is a sampling best-first method to search for optimal decisions. The success of MCTS depends heavily on how the MCTS statistical tree is built and the selection policy plays a fundamental role in this. A particular selection policy that works particularly well, widely adopted in MCTS, is the Upper Confidence Bounds for Trees, referred to as UCT. Other more sophisticated bounds have been proposed by the community with the goal to improve MCTS performance on particular problems. Thus, it is evident that while the MCTS UCT behaves generally well, some variants might behave better. As a result of this, multiple works have been proposed to evolve a selection policy to be used in MCTS. Although all these works are inspiring, none of them have carried out an in-depth analysis shedding light under what circumstances an evolved alternative of MCTS UCT might be beneficial in MCTS due to focusing on a single type of problem. In sharp contrast to this, in this work we use five functions of different nature, going from a unimodal function, covering multimodal functions to deceptive functions. We demonstrate how the evolution of the MCTS UCT might be beneficial in multimodal and deceptive scenarios, whereas the MCTS UCT is robust in unimodal scenarios and competitive in the rest of the scenarios used in this study.
Diffusion models have shown incredible capabilities as generative models; indeed, they power the current state-of-the-art models on text-conditioned image generation such as Imagen and DALL-E 2. In this work we review, demystify, and unify the understanding of diffusion models across both variational and score-based perspectives. We first derive Variational Diffusion Models (VDM) as a special case of a Markovian Hierarchical Variational Autoencoder, where three key assumptions enable tractable computation and scalable optimization of the ELBO. We then prove that optimizing a VDM boils down to learning a neural network to predict one of three potential objectives: the original source input from any arbitrary noisification of it, the original source noise from any arbitrarily noisified input, or the score function of a noisified input at any arbitrary noise level. We then dive deeper into what it means to learn the score function, and connect the variational perspective of a diffusion model explicitly with the Score-based Generative Modeling perspective through Tweedie's Formula. Lastly, we cover how to learn a conditional distribution using diffusion models via guidance.
The transformer architecture and variants presented remarkable success across many machine learning tasks in recent years. This success is intrinsically related to the capability of handling long sequences and the presence of context-dependent weights from the attention mechanism. We argue that these capabilities suit the central role of a Meta-Reinforcement Learning algorithm. Indeed, a meta-RL agent needs to infer the task from a sequence of trajectories. Furthermore, it requires a fast adaptation strategy to adapt its policy for a new task -- which can be achieved using the self-attention mechanism. In this work, we present TrMRL (Transformers for Meta-Reinforcement Learning), a meta-RL agent that mimics the memory reinstatement mechanism using the transformer architecture. It associates the recent past of working memories to build an episodic memory recursively through the transformer layers. We show that the self-attention computes a consensus representation that minimizes the Bayes Risk at each layer and provides meaningful features to compute the best actions. We conducted experiments in high-dimensional continuous control environments for locomotion and dexterous manipulation. Results show that TrMRL presents comparable or superior asymptotic performance, sample efficiency, and out-of-distribution generalization compared to the baselines in these environments.
Recent years have witnessed significant advances in technologies and services in modern network applications, including smart grid management, wireless communication, cybersecurity as well as multi-agent autonomous systems. Considering the heterogeneous nature of networked entities, emerging network applications call for game-theoretic models and learning-based approaches in order to create distributed network intelligence that responds to uncertainties and disruptions in a dynamic or an adversarial environment. This paper articulates the confluence of networks, games and learning, which establishes a theoretical underpinning for understanding multi-agent decision-making over networks. We provide an selective overview of game-theoretic learning algorithms within the framework of stochastic approximation theory, and associated applications in some representative contexts of modern network systems, such as the next generation wireless communication networks, the smart grid and distributed machine learning. In addition to existing research works on game-theoretic learning over networks, we highlight several new angles and research endeavors on learning in games that are related to recent developments in artificial intelligence. Some of the new angles extrapolate from our own research interests. The overall objective of the paper is to provide the reader a clear picture of the strengths and challenges of adopting game-theoretic learning methods within the context of network systems, and further to identify fruitful future research directions on both theoretical and applied studies.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.