Let $\mathcal{D}$ be a set of $n$ disks in the plane. The disk graph $G_\mathcal{D}$ for $\mathcal{D}$ is the undirected graph with vertex set $\mathcal{D}$ in which two disks are joined by an edge if and only if they intersect. The directed transmission graph $G^{\rightarrow}_\mathcal{D}$ for $\mathcal{D}$ is the directed graph with vertex set $\mathcal{D}$ in which there is an edge from a disk $D_1 \in \mathcal{D}$ to a disk $D_2 \in \mathcal{D}$ if and only if $D_1$ contains the center of $D_2$. Given $\mathcal{D}$ and two non-intersecting disks $s, t \in \mathcal{D}$, we show that a minimum $s$-$t$ vertex cut in $G_\mathcal{D}$ or in $G^{\rightarrow}_\mathcal{D}$ can be found in $O(n^{3/2}\text{polylog} n)$ expected time. To obtain our result, we combine an algorithm for the maximum flow problem in general graphs with dynamic geometric data structures to manipulate the disks. As an application, we consider the barrier resilience problem in a rectangular domain. In this problem, we have a vertical strip $S$ bounded by two vertical lines, $L_\ell$ and $L_r$, and a collection $\mathcal{D}$ of disks. Let $a$ be a point in $S$ above all disks of $\mathcal{D}$, and let $b$ a point in $S$ below all disks of $\mathcal{D}$. The task is to find a curve from $a$ to $b$ that lies in $S$ and that intersects as few disks of $\mathcal{D}$ as possible. Using our improved algorithm for minimum cuts in disk graphs, we can solve the barrier resilience problem in $O(n^{3/2}\text{polylog} n)$ expected time.
Let $G$ be a graph, which represents a social network, and suppose each node $v$ has a threshold value $\tau(v)$. Consider an initial configuration, where each node is either positive or negative. In each discrete time step, a node $v$ becomes/remains positive if at least $\tau(v)$ of its neighbors are positive and negative otherwise. A node set $\mathcal{S}$ is a Target Set (TS) whenever the following holds: if $\mathcal{S}$ is fully positive initially, all nodes in the graph become positive eventually. We focus on a generalization of TS, called Timed TS (TTS), where it is permitted to assign a positive state to a node at any step of the process, rather than just at the beginning. We provide graph structures for which the minimum TTS is significantly smaller than the minimum TS, indicating that timing is an essential aspect of successful target selection strategies. Furthermore, we prove tight bounds on the minimum size of a TTS in terms of the number of nodes and maximum degree when the thresholds are assigned based on the majority rule. We show that the problem of determining the minimum size of a TTS is NP-hard and provide an Integer Linear Programming formulation and a greedy algorithm. We evaluate the performance of our algorithm by conducting experiments on various synthetic and real-world networks. We also present a linear-time exact algorithm for trees.
We investigate a fundamental vertex-deletion problem called (Induced) Subgraph Hitting: given a graph $G$ and a set $\mathcal{F}$ of forbidden graphs, the goal is to compute a minimum-sized set $S$ of vertices of $G$ such that $G-S$ does not contain any graph in $\mathcal{F}$ as an (induced) subgraph. This is a generic problem that encompasses many well-known problems that were extensively studied on their own, particularly (but not only) from the perspectives of both approximation and parameterization. In this paper, we study the approximability of the problem on a large variety of graph classes. Our first result is a linear-time $(1+\varepsilon)$-approximation reduction from (Induced) Subgraph Hitting on any graph class $\mathcal{G}$ of bounded expansion to the same problem on bounded degree graphs within $\mathcal{G}$. This directly yields linear-size $(1+\varepsilon)$-approximation lossy kernels for the problems on any bounded-expansion graph classes. Our second result is a linear-time approximation scheme for (Induced) Subgraph Hitting on any graph class $\mathcal{G}$ of polynomial expansion, based on the local-search framework of Har-Peled and Quanrud [SICOMP 2017]. This approximation scheme can be applied to a more general family of problems that aim to hit all subgraphs satisfying a certain property $\pi$ that is efficiently testable and has bounded diameter. Both of our results have applications to Subgraph Hitting (not induced) on wide classes of geometric intersection graphs, resulting in linear-size lossy kernels and (near-)linear time approximation schemes for the problem.
We consider the classic budgeted maximum weight independent set (BMWIS) problem. The input is a graph $G = (V,E)$, a weight function $w:V \rightarrow \mathbb{R}_{\geq 0}$, a cost function $c:V \rightarrow \mathbb{R}_{\geq 0}$, and a budget $B \in \mathbb{R}_{\geq 0}$. The goal is to find an independent set $S \subseteq V$ in $G$ such that $\sum_{v \in S} c(v) \leq B$, which maximizes the total weight $\sum_{v \in S} w(v)$. Since the problem on general graphs cannot be approximated within ratio $|V|^{1-\varepsilon}$ for any $\varepsilon>0$, BMWIS has attracted significant attention on graph families for which a maximum weight independent set can be computed in polynomial time. Two notable such graph families are bipartite and perfect graphs. BMWIS is known to be NP-hard on both of these graph families; however, the best possible approximation guarantees for these graphs are wide open. In this paper, we give a tight $2$-approximation for BMWIS on perfect graphs and bipartite graphs. In particular, we give We a $(2-\varepsilon)$ lower bound for BMWIS on bipartite graphs, already for the special case where the budget is replaced by a cardinality constraint, based on the Small Set Expansion Hypothesis (SSEH). For the upper bound, we design a $2$-approximation for BMWIS on perfect graphs using a Lagrangian relaxation based technique. Finally, we obtain a tight lower bound for the capacitated maximum weight independent set (CMWIS) problem, the special case of BMWIS where $w(v) = c(v)~\forall v \in V$. We show that CMWIS on bipartite and perfect graphs is unlikely to admit an efficient polynomial-time approximation scheme (EPTAS). Thus, the existing PTAS for CMWIS is essentially the best we can expect.
We develop a framework for algorithms finding diameter in graphs of bounded distance Vapnik-Chervonenkis dimension, in (parametrized) sub-quadratic time complexity. The class of bounded distance VC-dimension graphs is wide, including, e.g. all minor-free graphs. We build on the work of Ducoffe et al., improving their technique. With our approach the algorithms become simpler and faster, working in $\widetilde{\mathcal{O}}(k \cdot V^{1-1/d} \cdot E)$ time complexity, where $k$ is the diameter, $d$ is the VC-dimension. Furthermore, it allows us to use the technique in more general setting. In particular, we use this framework for geometric intersection graphs, i.e. graphs where vertices are identical geometric objects on a plane and the adjacency is defined by intersection. Applying our approach for these graphs, we answer a question posed by Bringmann et al., finding a $\widetilde{\mathcal{O}}(n^{7/4})$ parametrized diameter algorithm for unit square intersection graph of size $n$, as well as a more general algorithm for convex polygon intersection graphs.
Algorithms for online learning typically require one or more boundedness assumptions: that the domain is bounded, that the losses are Lipschitz, or both. In this paper, we develop a new setting for online learning with unbounded domains and non-Lipschitz losses. For this setting we provide an algorithm which guarantees $R_{T}(u)\le \tilde O(G\|u\|\sqrt{T}+L\|u\|^{2}\sqrt{T})$ regret on any problem where the subgradients satisfy $\|g_{t}\|\le G+L\|w_{t}\|$, and show that this bound is unimprovable without further assumptions. We leverage this algorithm to develop new saddle-point optimization algorithms that converge in duality gap in unbounded domains, even in the absence of meaningful curvature. Finally, we provide the first algorithm achieving non-trivial dynamic regret in an unbounded domain for non-Lipschitz losses, as well as a matching lower bound. The regret of our dynamic regret algorithm automatically improves to a novel $L^{*}$ bound when the losses are smooth.
A walk $u_0u_1 \ldots u_{k-1}u_k$ is a \textit{weakly toll walk} if $u_0u_i \in E(G)$ implies $u_i = u_1$ and $u_ju_k\in E(G)$ implies $u_j=u_{k-1}$. A set $S$ of vertices of $G$ is {\it weakly toll convex} if for any two non-adjacent vertices $x,y \in S$ any vertex in a weakly toll walk between $x$ and $y$ is also in $S$. The {\em weakly toll convexity} is the graph convexity space defined over weakly toll convex sets. Many studies are devoted to determine if a graph equipped with a convexity space is a {\em convex geometry}. An \emph{extreme vertex} is an element $x$ of a convex set $S$ such that the set $S\backslash\{x\}$ is also convex. A graph convexity space is said to be a convex geometry if it satisfies the Minkowski-Krein-Milman property, which states that every convex set is the convex hull of its extreme vertices. It is known that chordal, Ptolemaic, weakly polarizable, and interval graphs can be characterized as convex geometries with respect to the monophonic, geodesic, $m^3$, and toll convexities, respectively. Other important classes of graphs can also be characterized in this way. In this paper, we prove that a graph is a convex geometry with respect to the weakly toll convexity if and only if it is a proper interval graph. Furthermore, some well-known graph invariants are studied with respect to the weakly toll convexity.
Learning with expert advice and multi-armed bandit are two classic online decision problems which differ on how the information is observed in each round of the game. We study a family of problems interpolating the two. For a vector $\mathbf{m}=(m_1,\dots,m_K)\in \mathbb{N}^K$, an instance of $\mathbf{m}$-MAB indicates that the arms are partitioned into $K$ groups and the $i$-th group contains $m_i$ arms. Once an arm is pulled, the losses of all arms in the same group are observed. We prove tight minimax regret bounds for $\mathbf{m}$-MAB and design an optimal PAC algorithm for its pure exploration version, $\mathbf{m}$-BAI, where the goal is to identify the arm with minimum loss with as few rounds as possible. We show that the minimax regret of $\mathbf{m}$-MAB is $\Theta\left(\sqrt{T\sum_{k=1}^K\log (m_k+1)}\right)$ and the minimum number of pulls for an $(\epsilon,0.05)$-PAC algorithm of $\mathbf{m}$-BAI is $\Theta\left(\frac{1}{\epsilon^2}\cdot \sum_{k=1}^K\log (m_k+1)\right)$. Both our upper bounds and lower bounds for $\mathbf{m}$-MAB can be extended to a more general setting, namely the bandit with graph feedback, in terms of the clique cover and related graph parameters. As consequences, we obtained tight minimax regret bounds for several families of feedback graphs.
Given an undirected graph $G=(V,E)$, a vertex $v\in V$ is edge-vertex (ev) dominated by an edge $e\in E$ if $v$ is either incident to $e$ or incident to an adjacent edge of $e$. A set $S^{ev}\subseteq E$ is an edge-vertex dominating set (referred to as \textit{ev}-dominating set and in short as \textit{EVDS}) of $G$ if every vertex of $G$ is \textit{ev}-dominated by at least one edge of $S^{ev}$. The minimum cardinality of an \textit{ev}-dominating set is the \textit{ev}-domination number. The edge-vertex dominating set problem is to find a minimum \textit{ev}-domination number. In this paper, we prove that the \textit{ev}-dominating set problem is {\tt NP-hard} on unit disk graphs. We also prove that this problem admits a polynomial-time approximation scheme on unit disk graphs. Finally, we give a simple 5-factor linear-time approximation algorithm.
Off-policy evaluation (OPE) aims to estimate the benefit of following a counterfactual sequence of actions, given data collected from executed sequences. However, existing OPE estimators often exhibit high bias and high variance in problems involving large, combinatorial action spaces. We investigate how to mitigate this issue using factored action spaces i.e. expressing each action as a combination of independent sub-actions from smaller action spaces. This approach facilitates a finer-grained analysis of how actions differ in their effects. In this work, we propose a new family of "decomposed" importance sampling (IS) estimators based on factored action spaces. Given certain assumptions on the underlying problem structure, we prove that the decomposed IS estimators have less variance than their original non-decomposed versions, while preserving the property of zero bias. Through simulations, we empirically verify our theoretical results, probing the validity of various assumptions. Provided with a technique that can derive the action space factorisation for a given problem, our work shows that OPE can be improved "for free" by utilising this inherent problem structure.
We present self-supervised geometric perception (SGP), the first general framework to learn a feature descriptor for correspondence matching without any ground-truth geometric model labels (e.g., camera poses, rigid transformations). Our first contribution is to formulate geometric perception as an optimization problem that jointly optimizes the feature descriptor and the geometric models given a large corpus of visual measurements (e.g., images, point clouds). Under this optimization formulation, we show that two important streams of research in vision, namely robust model fitting and deep feature learning, correspond to optimizing one block of the unknown variables while fixing the other block. This analysis naturally leads to our second contribution -- the SGP algorithm that performs alternating minimization to solve the joint optimization. SGP iteratively executes two meta-algorithms: a teacher that performs robust model fitting given learned features to generate geometric pseudo-labels, and a student that performs deep feature learning under noisy supervision of the pseudo-labels. As a third contribution, we apply SGP to two perception problems on large-scale real datasets, namely relative camera pose estimation on MegaDepth and point cloud registration on 3DMatch. We demonstrate that SGP achieves state-of-the-art performance that is on-par or superior to the supervised oracles trained using ground-truth labels.