亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We explore space traffic management as an application of collision-free navigation in multi-agent systems where vehicles have limited observation and communication ranges. We investigate the effectiveness of transferring a collision avoidance multi-agent reinforcement (MARL) model trained on a ground environment to a space one. We demonstrate that the transfer learning model outperforms a model that is trained directly on the space environment. Furthermore, we find that our approach works well even when we consider the perturbations to satellite dynamics caused by the Earth's oblateness. Finally, we show how our methods can be used to evaluate the benefits of information-sharing between satellite operators in order to improve coordination.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 控制器 · 機器人 · Subspace · INTERACT ·
2023 年 7 月 2 日

Increasing the degrees of freedom of robotic systems makes them more versatile and flexible. This usually renders the system kinematically redundant: the main manipulation or interaction task does not fully determine its joint maneuvers. Additional constraints or objectives are required to solve the under-determined control and planning problems. The state-of-the-art approaches arrange tasks in a hierarchy and decouple lower from higher priority tasks on velocity or torque level using projectors. We develop an approach to redundancy resolution and decoupling on position level by determining subspaces of the configurations space independent of the primary task. We call them \emph{orthogonal foliations} because they are, in a certain sense, orthogonal to the task self-motion manifolds. The approach provides a better insight into the topological properties of robot kinematics and control problems, allowing a global view. A condition for the existence of orthogonal foliations is derived. If the condition is not satisfied, we will still find approximate solutions by numerical optimization. Coordinates can be defined on these orthogonal foliations and can be used as additional task variables for control. We show in simulations that we can control the system without the need for projectors using these coordinates, and we validate the approach experimentally on a 7-DoF robot.

Colonies of the arboreal turtle ant create networks of trails that link nests and food sources on the graph formed by branches and vines in the canopy of the tropical forest. Ants put down a volatile pheromone on edges as they traverse them. At each vertex, the next edge to traverse is chosen using a decision rule based on the current pheromone level. There is a bidirectional flow of ants around the network. In a field study, Chandrasekhar et al. (2021) observed that the trail networks approximately minimize the number of vertices, thus solving a variant of the popular shortest path problem without any central control and with minimal computational resources. We propose a biologically plausible model, based on a variant of the reinforced random walk on a graph, which explains this observation and suggests surprising algorithms for the shortest path problem and its variants. Through simulations and analysis, we show that when the rate of flow of ants does not change, the dynamics converges to the path with the minimum number of vertices, as observed in the field. The dynamics converges to the shortest path when the rate of flow increases with time, so the colony can solve the shortest path problem merely by increasing the flow rate. We also show that to guarantee convergence to the shortest path, bidirectional flow and a decision rule dividing the flow in proportion to the pheromone level are necessary, but convergence to approximately short paths is possible with other decision rules.

Reliable real-world deployment of reinforcement learning (RL) methods requires a nuanced understanding of their strengths and weaknesses and how they compare to those of humans. Human-machine systems are becoming more prevalent and the design of these systems relies on a task-oriented understanding of both human learning (HL) and RL. Thus, an important line of research is characterizing how the structure of a learning task affects learning performance. While increasingly complex benchmark environments have led to improved RL capabilities, such environments are difficult to use for the dedicated study of task structure. To address this challenge we present a learning environment built to support rigorous study of the impact of task structure on HL and RL. We demonstrate the environment's utility for such study through example experiments in task structure that show performance differences between humans and RL algorithms.

Transfer learning leverages knowledge from other domains and has been successful in many applications. Transfer learning methods rely on the overall similarity of the source and target domains. However, in some cases, it is impossible to provide an overall similar source domain, and only some source domains with similar local features can be provided. Can transfer learning be achieved? In this regard, we propose a multi-source adversarial transfer learning method based on local feature similarity to the source domain to handle transfer scenarios where the source and target domains have only local similarities. This method extracts transferable local features between a single source domain and the target domain through a sub-network. Specifically, the feature extractor of the sub-network is induced by the domain discriminator to learn transferable knowledge between the source domain and the target domain. The extracted features are then weighted by an attention module to suppress non-transferable local features while enhancing transferable local features. In order to ensure that the data from the target domain in different sub-networks in the same batch is exactly the same, we designed a multi-source domain independent strategy to provide the possibility for later local feature fusion to complete the key features required. In order to verify the effectiveness of the method, we made the dataset "Local Carvana Image Masking Dataset". Applying the proposed method to the image segmentation task of the proposed dataset achieves better transfer performance than other multi-source transfer learning methods. It is shown that the designed transfer learning method is feasible for transfer scenarios where the source and target domains have only local similarities.

Despite its importance in both industrial and service robotics, mobile manipulation remains a significant challenge as it requires a seamless integration of end-effector trajectory generation with navigation skills as well as reasoning over long-horizons. Existing methods struggle to control the large configuration space, and to navigate dynamic and unknown environments. In previous work, we proposed to decompose mobile manipulation tasks into a simplified motion generator for the end-effector in task space and a trained reinforcement learning agent for the mobile base to account for kinematic feasibility of the motion. In this work, we introduce Neural Navigation for Mobile Manipulation (N$^2$M$^2$) which extends this decomposition to complex obstacle environments and enables it to tackle a broad range of tasks in real world settings. The resulting approach can perform unseen, long-horizon tasks in unexplored environments while instantly reacting to dynamic obstacles and environmental changes. At the same time, it provides a simple way to define new mobile manipulation tasks. We demonstrate the capabilities of our proposed approach in extensive simulation and real-world experiments on multiple kinematically diverse mobile manipulators. Code and videos are publicly available at //mobile-rl.cs.uni-freiburg.de.

Collision avoidance is key for mobile robots and agents to operate safely in the real world. In this work we present SAFER, an efficient and effective collision avoidance system that is able to improve safety by correcting the control commands sent by an operator. It combines real-world reinforcement learning (RL), search-based online trajectory planning, and automatic emergency intervention, e.g. automatic emergency braking (AEB). The goal of the RL is to learn an effective corrective control action that is used in a focused search for collision-free trajectories, and to reduce the frequency of triggering automatic emergency braking. This novel setup enables the RL policy to learn safely and directly on mobile robots in a real-world indoor environment, minimizing actual crashes even during training. Our real-world experiments show that, when compared with several baselines, our approach enjoys a higher average speed, lower crash rate, less emergency intervention, smaller computation overhead, and smoother overall control.

Effective multi-robot teams require the ability to move to goals in complex environments in order to address real-world applications such as search and rescue. Multi-robot teams should be able to operate in a completely decentralized manner, with individual robot team members being capable of acting without explicit communication between neighbors. In this paper, we propose a novel game theoretic model that enables decentralized and communication-free navigation to a goal position. Robots each play their own distributed game by estimating the behavior of their local teammates in order to identify behaviors that move them in the direction of the goal, while also avoiding obstacles and maintaining team cohesion without collisions. We prove theoretically that generated actions approach a Nash equilibrium, which also corresponds to an optimal strategy identified for each robot. We show through extensive simulations that our approach enables decentralized and communication-free navigation by a multi-robot system to a goal position, and is able to avoid obstacles and collisions, maintain connectivity, and respond robustly to sensor noise.

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

In this paper, we propose a novel multi-task learning architecture, which incorporates recent advances in attention mechanisms. Our approach, the Multi-Task Attention Network (MTAN), consists of a single shared network containing a global feature pool, together with task-specific soft-attention modules, which are trainable in an end-to-end manner. These attention modules allow for learning of task-specific features from the global pool, whilst simultaneously allowing for features to be shared across different tasks. The architecture can be built upon any feed-forward neural network, is simple to implement, and is parameter efficient. Experiments on the CityScapes dataset show that our method outperforms several baselines in both single-task and multi-task learning, and is also more robust to the various weighting schemes in the multi-task loss function. We further explore the effectiveness of our method through experiments over a range of task complexities, and show how our method scales well with task complexity compared to baselines.

Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.

北京阿比特科技有限公司