Older adults habitually encounter misinformation on social media, but there is little knowledge about their experiences with it. In this study, we combined a qualitative survey (n=119) with in-depth interviews (n=21) to investigate how older adults in America conceptualize, discern, and contextualize social media misinformation. As misinformation on social media in the past was driven towards influencing voting outcomes, we were particularly interested to approach our study from a voting intention perspective. We found that 62% of the participants intending to vote Democrat saw a manipulative political purpose behind the spread of misinformation while only 5% of those intending to vote Republican believed misinformation has a political dissent purpose. Regardless of the voting intentions, most participants relied on source heuristics combined with fact-checking to discern truth from misinformation on social media. The biggest concern about the misinformation, among all the participants, was that it increasingly leads to biased reasoning influenced by personal values and feelings instead of reasoning based on objective evidence. The participants intending to vote Democrat were in 74% of the cases concerned that misinformation will cause escalation of extremism in the future, while those intending to vote Republican, were undecided, or planned to abstain were concerned that misinformation will further erode the trust in democratic institutions, specifically in the context of public health and free and fair elections. During our interviews, we found that 63% of the participants who intended to vote Republican, were fully aware and acknowledged that Republican or conservative voices often time speak misinformation, even though they are closely aligned to their political ideology.
Artificial intelligence is transforming our lives, and technological progress and transfer from the academic and theoretical sphere to the real world are accelerating yearly. But during that progress and transition, several open problems and questions need to be addressed for the field to develop ethically, such as digital privacy, ownership, and control. These are some of the reasons why the currently most popular approaches of artificial intelligence, i.e., centralized AI (CEAI), are questionable, with other directions also being widely explored, such as decentralized artificial intelligence (DEAI), to solve some of the most reaching problems. This paper provides a systematic literature review (SLR) of existing work in the field of DEAI, presenting the findings of 71 identified studies. The paper's primary focus is identifying the building blocks of DEAI solutions and networks, tackling the DEAI analysis from a bottom-up approach. In the end, future directions of research and open problems are proposed.
While there now exists a large literature on policy evaluation and learning, much of prior work assumes that the treatment assignment of one unit does not affect the outcome of another unit. Unfortunately, ignoring interference may lead to biased policy evaluation and ineffective learned policies. For example, treating influential individuals who have many friends can generate positive spillover effects, thereby improving the overall performance of an individualized treatment rule (ITR). We consider the problem of evaluating and learning an optimal ITR under clustered network interference (also known as partial interference) where clusters of units are sampled from a population and units may influence one another within each cluster. Unlike previous methods that impose strong restrictions on spillover effects, the proposed methodology only assumes a semiparametric structural model where each unit's outcome is an additive function of individual treatments within the cluster. Under this model, we propose an estimator that can be used to evaluate the empirical performance of an ITR. We show that this estimator is substantially more efficient than the standard inverse probability weighting estimator, which does not impose any assumption about spillover effects. We derive the finite-sample regret bound for a learned ITR, showing that the use of our efficient evaluation estimator leads to the improved performance of learned policies. Finally, we conduct simulation and empirical studies to illustrate the advantages of the proposed methodology.
Planning has been part of the core pursuit for artificial intelligence since its conception, but earlier AI agents mostly focused on constrained settings because many of the cognitive substrates necessary for human-level planning have been lacking. Recently, language agents powered by large language models (LLMs) have shown interesting capabilities such as tool use and reasoning. Are these language agents capable of planning in more complex settings that are out of the reach of prior AI agents? To advance this investigation, we propose TravelPlanner, a new planning benchmark that focuses on travel planning, a common real-world planning scenario. It provides a rich sandbox environment, various tools for accessing nearly four million data records, and 1,225 meticulously curated planning intents and reference plans. Comprehensive evaluations show that the current language agents are not yet capable of handling such complex planning tasks-even GPT-4 only achieves a success rate of 0.6%. Language agents struggle to stay on task, use the right tools to collect information, or keep track of multiple constraints. However, we note that the mere possibility for language agents to tackle such a complex problem is in itself non-trivial progress. TravelPlanner provides a challenging yet meaningful testbed for future language agents.
Volumetric videos, benefiting from immersive 3D realism and interactivity, hold vast potential for various applications, while the tremendous data volume poses significant challenges for compression. Recently, NeRF has demonstrated remarkable potential in volumetric video compression thanks to its simple representation and powerful 3D modeling capabilities, where a notable work is ReRF. However, ReRF separates the modeling from compression process, resulting in suboptimal compression efficiency. In contrast, in this paper, we propose a volumetric video compression method based on dynamic NeRF in a more compact manner. Specifically, we decompose the NeRF representation into the coefficient fields and the basis fields, incrementally updating the basis fields in the temporal domain to achieve dynamic modeling. Additionally, we perform end-to-end joint optimization on the modeling and compression process to further improve the compression efficiency. Extensive experiments demonstrate that our method achieves higher compression efficiency compared to ReRF on various datasets.
The primary aim of this paper is to investigate the integration of emotions into the social navigation framework to analyse its effect on both navigation and human physiological safety and comfort. The proposed framework uses leg detection to find the whereabouts of people and computes adaptive proxemic zones based on their emotional state. We designed several case studies in a simulated environment and examined 3 different emotions; positive (happy), neutral and negative (angry). A survey study was conducted with 70 participants to explore their impressions about the navigation of the robot and compare the human safety and comfort measurements results. Both survey and simulation results showed that integrating emotions into proxemic zones has a significant effect on the physical safety of a human. The results revealed that when a person is angry, the robot is expected to navigate further than the standard distance to support his/her physiological comfort and safety. The results also showed that reducing the navigation distance is not preferred when a person is happy.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.
We propose a novel method for automatic reasoning on knowledge graphs based on debate dynamics. The main idea is to frame the task of triple classification as a debate game between two reinforcement learning agents which extract arguments -- paths in the knowledge graph -- with the goal to promote the fact being true (thesis) or the fact being false (antithesis), respectively. Based on these arguments, a binary classifier, called the judge, decides whether the fact is true or false. The two agents can be considered as sparse, adversarial feature generators that present interpretable evidence for either the thesis or the antithesis. In contrast to other black-box methods, the arguments allow users to get an understanding of the decision of the judge. Since the focus of this work is to create an explainable method that maintains a competitive predictive accuracy, we benchmark our method on the triple classification and link prediction task. Thereby, we find that our method outperforms several baselines on the benchmark datasets FB15k-237, WN18RR, and Hetionet. We also conduct a survey and find that the extracted arguments are informative for users.
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.
Aspect based sentiment analysis (ABSA) can provide more detailed information than general sentiment analysis, because it aims to predict the sentiment polarities of the given aspects or entities in text. We summarize previous approaches into two subtasks: aspect-category sentiment analysis (ACSA) and aspect-term sentiment analysis (ATSA). Most previous approaches employ long short-term memory and attention mechanisms to predict the sentiment polarity of the concerned targets, which are often complicated and need more training time. We propose a model based on convolutional neural networks and gating mechanisms, which is more accurate and efficient. First, the novel Gated Tanh-ReLU Units can selectively output the sentiment features according to the given aspect or entity. The architecture is much simpler than attention layer used in the existing models. Second, the computations of our model could be easily parallelized during training, because convolutional layers do not have time dependency as in LSTM layers, and gating units also work independently. The experiments on SemEval datasets demonstrate the efficiency and effectiveness of our models.