亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work-in-progress paper introduces a prototype for a novel Graph Neural Network (GNN) based approach to estimate hidden states in cyber attack simulations. Utilizing the Meta Attack Language (MAL) in conjunction with Relational Dynamic Decision Language (RDDL) conformant simulations, our framework aims to map the intricate complexity of cyber attacks with a vast number of possible vectors in the simulations. While the prototype is yet to be completed and validated, we discuss its foundational concepts, the architecture, and the potential implications for the field of computer security.

相關內容

Named Entity Recognition (NER) is a sub-task of Natural Language Processing (NLP) that distinguishes entities from unorganized text into predefined categorization. In recent years, a lot of Bangla NLP subtasks have received quite a lot of attention; but Named Entity Recognition in Bangla still lags behind. In this research, we explored the existing state of research in Bangla Named Entity Recognition. We tried to figure out the limitations that current techniques and datasets face, and we would like to address these limitations in our research. Additionally, We developed a Gazetteer that has the ability to significantly boost the performance of NER. We also proposed a new NER solution by taking advantage of state-of-the-art NLP tools that outperform conventional techniques.

We present four main contributions to enhance the performance of Large Language Models (LLMs) in generating domain-specific code: (i) utilizing LLM-based data splitting and data renovation techniques to improve the semantic representation of embeddings' space; (ii) introducing the Chain of Density for Renovation Credibility (CoDRC), driven by LLMs, and the Adaptive Text Renovation (ATR) algorithm for assessing data renovation reliability; (iii) developing the Implicit Knowledge Expansion and Contemplation (IKEC) Prompt technique; and (iv) effectively refactoring existing scripts to generate new and high-quality scripts with LLMs. By using engineering simulation software RedHawk-SC as a case study, we demonstrate the effectiveness of our data pre-processing method for expanding and categorizing scripts. When combined with IKEC, these techniques enhance the Retrieval-Augmented Generation (RAG) method in retrieving more relevant information, ultimately achieving a 73.33% "Percentage of Correct Lines" for code generation problems in MapReduce applications.

Autoregressive Large Language Models (LLMs) trained for next-word prediction have demonstrated remarkable proficiency at producing coherent text. But are they equally adept at forming coherent probability judgments? We use probabilistic identities and repeated judgments to assess the coherence of probability judgments made by LLMs. Our results show that the judgments produced by these models are often incoherent, displaying human-like systematic deviations from the rules of probability theory. Moreover, when prompted to judge the same event, the mean-variance relationship of probability judgments produced by LLMs shows an inverted-U-shaped like that seen in humans. We propose that these deviations from rationality can be explained by linking autoregressive LLMs to implicit Bayesian inference and drawing parallels with the Bayesian Sampler model of human probability judgments.

This paper presents new solutions for Private Information Retrieval (PIR) with side information. This problem is motivated by PIR settings in which a client has side information about the data held by the servers and would like to leverage this information in order to improve the download rate. The problem of PIR with side information has been the subject of several recent studies that presented achievability schemes as well as converses for both multi-server and single-server settings. However, the solutions for the multi-server settings adapted from the solutions for the single-server setting in a rather straightforward manner, relying on the concept of super-messages. Such solutions require an exponential degree of sub-packetization (in terms of the number of messages). This paper makes the following contributions. First, we revisit the PIR problem with side information and present a new approach to leverage side information in the context of PIR. The key idea of our approach is a randomized algorithm to determine the linear combinations of the sub-packets that need to be recovered from each server. In addition, our approach takes advantage of the fact that the identity of the side information messages does not need to be kept private, and, as a result, the information retrieval scheme does not need to be symmetric. Second, we present schemes for PIR with side information that achieve a higher rate than previously proposed solutions and require a significantly lower degree of sub-packetization (linear in the number of servers). Our scheme not only achieves the highest known download rate for the problem at hand but also invalidates a previously claimed converse bound on the maximum achievable download rate.

This paper introduces innovative benchmarks to evaluate Vision-Language Models (VLMs) in real-world zero-shot recognition tasks, focusing on the granularity and specificity of prompting text. We propose a unique evaluation protocol using adapted ImageNet and MS-COCO datasets to assess models' consistency in recognizing concepts at varying granularity levels and their sensitivity to the specificity of language inputs. Our extensive evaluation reveals that state-of-the-art VLMs, including contrastive models like CLIP, struggle with granularity and are sensitive to text specificity, impacting their effectiveness in open-world settings. This comprehensive study, a first in evaluating VLMs from these perspectives, provides valuable insights and tools for the community, highlighting the limitations and paving the way for enhanced models with better generalization in zero-shot recognition.

In this paper we study the expectation maximization (EM) technique for one-bit MIMO-OFDM detection (OMOD). Arising from the recent interest in massive MIMO with one-bit analog-to-digital converters, OMOD is a massive-scale problem. EM is an iterative method that can exploit the OFDM structure to process the problem in a per-iteration efficient fashion. In this study we analyze the convergence rate of EM for a class of approximate maximum-likelihood OMOD formulations, or, in a broader sense, a class of problems involving regression from quantized data. We show how the SNR and channel conditions can have an impact on the convergence rate. We do so by making a connection between the EM and the proximal gradient methods in the context of OMOD. This connection also gives us insight to build new accelerated and/or inexact EM schemes. The accelerated scheme has faster convergence in theory, and the inexact scheme provides us with the flexibility to implement EM more efficiently, with convergence guarantee. Furthermore we develop a deep EM algorithm, wherein we take the structure of our inexact EM algorithm and apply deep unfolding to train an efficient structured deep net. Simulation results show that our accelerated exact/inexact EM algorithms run much faster than their standard EM counterparts, and that the deep EM algorithm gives promising detection and runtime performances.

In this paper, we introduce a novel explicit family of subcodes of Reed-Solomon (RS) codes that efficiently achieve list decoding capacity with a constant output list size. Our approach builds upon the idea of large linear subcodes of RS codes evaluated on a subfield, similar to the method employed by Guruswami and Xing (STOC 2013). However, our approach diverges by leveraging the idea of {\it permuted product codes}, thereby simplifying the construction by avoiding the need of {\it subspace designs}. Specifically, the codes are constructed by initially forming the tensor product of two RS codes with carefully selected evaluation sets, followed by specific cyclic shifts to the codeword rows. This process results in each codeword column being treated as an individual coordinate, reminiscent of prior capacity-achieving codes, such as folded RS codes and univariate multiplicity codes. This construction is easily shown to be a subcode of an interleaved RS code, equivalently, an RS code evaluated on a subfield. Alternatively, the codes can be constructed by the evaluation of bivariate polynomials over orbits generated by \emph{two} affine transformations with coprime orders, extending the earlier use of a single affine transformation in folded RS codes and the recent affine folded RS codes introduced by Bhandari {\it et al.} (IEEE T-IT, Feb.~2024). While our codes require large, yet constant characteristic, the two affine transformations facilitate achieving code length equal to the field size, without the restriction of the field being prime, contrasting with univariate multiplicity codes.

This paper introduces a novel approach to enumerate and assess Trapping sets in quasi-cyclic codes, those with circulant sizes that are non-prime numbers. Leveraging the quasi-cyclic properties, the method employs a tabular technique to streamline the importance sampling step for estimating the pseudo-codeword weight of Trapping sets. The presented methodology draws on the mathematical framework established in the provided theorem, which elucidates the behavior of projection and lifting transformations on pseudo-codewords

This paper presents a method for achieving equilibrium in the ISING Hamiltonian when confronted with unevenly distributed charges on an irregular grid. Employing (Multi-Edge) QC-LDPC codes and the Boltzmann machine, our approach involves dimensionally expanding the system, substituting charges with circulants, and representing distances through circulant shifts. This results in a systematic mapping of the charge system onto a space, transforming the irregular grid into a uniform configuration, applicable to Torical and Circular Hyperboloid Topologies. The paper covers fundamental definitions and notations related to QC-LDPC Codes, Multi-Edge QC-LDPC codes, and the Boltzmann machine. It explores the marginalization problem in code on the graph probabilistic models for evaluating the partition function, encompassing exact and approximate estimation techniques. Rigorous proof is provided for the attainability of equilibrium states for the Boltzmann machine under Torical and Circular Hyperboloid, paving the way for the application of our methodology. Practical applications of our approach are investigated in Finite Geometry QC-LDPC Codes, specifically in Material Science. The paper further explores its effectiveness in the realm of Natural Language Processing Transformer Deep Neural Networks, examining Generalized Repeat Accumulate Codes, Spatially-Coupled and Cage-Graph QC-LDPC Codes. The versatile and impactful nature of our topology-aware hardware-efficient quasi-cycle codes equilibrium method is showcased across diverse scientific domains without the use of specific section delineations.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

北京阿比特科技有限公司