亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce KaRRi, an improved algorithm for scheduling a fleet of shared vehicles as it is used by services like UberXShare and Lyft Shared. We speed up the basic online algorithm that looks for all possible insertions of a new customer into a set of existing routes, we generalize the objective function, and efficiently support a large number of possible pick-up and drop-off locations. This lays an algorithmic foundation for ridesharing systems with higher vehicle occupancy -- enabling greatly reduced cost and ecological impact at comparable service quality. We find that our algorithm computes assignments between vehicles and riders several times faster than a previous state-of-the-art approach. Further, we observe that allowing meeting points for vehicles and riders can reduce the operating cost of vehicle fleets by up to $15\%$ while also reducing passenger wait and trip times.

相關內容

The analysis of survey data is a frequently arising issue in clinical trials, particularly when capturing quantities which are difficult to measure using, e.g., a technical device or a biochemical procedure. Typical examples are questionnaires about patient's well-being, pain, anxiety, quality of life or consent to an intervention. Data is captured on a discrete scale containing only a limited (usually three to ten) number of possible answers, of which the respondent has to pick the answer which fits best his personal opinion to the question. This data is generally located on an ordinal scale as answers can usually be arranged in an increasing order, e.g., "bad", "neutral", "good" for well-being or "none", "mild", "moderate", "severe" for pain. Since responses are often stored numerically for data processing purposes, analysis of survey data using ordinary linear regression (OLR) models seems to be natural. However, OLR assumptions are often not met as linear regression requires a constant variability of the response variable and can yield predictions out of the range of response categories. Moreover, in doing so, one only gains insights about the mean response which might, depending on the response distribution, not be very representative. In contrast, ordinal regression models are able to provide probability estimates for all response categories and thus yield information about the full response scale rather than just the mean. Although these methods are well described in the literature, they seem to be rarely applied to biomedical or survey data. In this paper, we give a concise overview about fundamentals of ordinal models, applications to a real data set, outline usage of state-of-the-art-software to do so and point out strengths, limitations and typical pitfalls. This article is a companion work to a current vignette-based structured interview study in paediatric anaesthesia.

Gaussianization is a simple generative model that can be trained without backpropagation. It has shown compelling performance on low dimensional data. As the dimension increases, however, it has been observed that the convergence speed slows down. We show analytically that the number of required layers scales linearly with the dimension for Gaussian input. We argue that this is because the model is unable to capture dependencies between dimensions. Empirically, we find the same linear increase in cost for arbitrary input $p(x)$, but observe favorable scaling for some distributions. We explore potential speed-ups and formulate challenges for further research.

The use of Micro Aerial Vehicles (MAVs) for inspection and surveillance missions has proved to be extremely useful, however, their usability is negatively impacted by the large power requirements and the limited operating time. This work describes the design and development of a novel hybrid aerial-ground vehicle, enabling multi-modal mobility and long operating time, suitable for long-endurance inspection and monitoring applications. The design consists of a MAV with two tiltable axles and four independent passive wheels, allowing it to fly, approach, land and move on flat and inclined surfaces, while using the same set of actuators for all modes of locomotion. In comparison to existing multi-modal designs with passive wheels, the proposed design enables a higher ground locomotion efficiency, provides a higher payload capacity, and presents one of the lowest mass increases due to the ground actuation mechanism. The vehicle's performance is evaluated through a series of real experiments, demonstrating its flying, ground locomotion and wall-climbing capabilities, and the energy consumption for all modes of locomotion is evaluated.

Autonomous robots are increasingly utilized in realistic scenarios with multiple complex tasks. In these scenarios, there may be a preferred way of completing all of the given tasks, but it is often in conflict with optimal execution. Recent work studies preference-based planning, however, they have yet to extend the notion of preference to the behavior of the robot with respect to each task. In this work, we introduce a novel notion of preference that provides a generalized framework to express preferences over individual tasks as well as their relations. Then, we perform an optimal trade-off (Pareto) analysis between behaviors that adhere to the user's preference and the ones that are resource optimal. We introduce an efficient planning framework that generates Pareto-optimal plans given user's preference by extending A* search. Further, we show a method of computing the entire Pareto front (the set of all optimal trade-offs) via an adaptation of a multi-objective A* algorithm. We also present a problem-agnostic search heuristic to enable scalability. We illustrate the power of the framework on both mobile robots and manipulators. Our benchmarks show the effectiveness of the heuristic with up to 2-orders of magnitude speedup.

The accurate and efficient evaluation of Newtonian potentials over general 2-D domains is important for the numerical solution of Poisson's equation and volume integral equations. In this paper, we present a simple and efficient high-order algorithm for computing the Newtonian potential over a planar domain discretized by an unstructured mesh. The algorithm is based on the use of Green's third identity for transforming the Newtonian potential into a collection of layer potentials over the boundaries of the mesh elements, which can be easily evaluated by the Helsing-Ojala method. One important component of our algorithm is the use of high-order (up to order 20) bivariate polynomial interpolation in the monomial basis, for which we provide extensive justification. The performance of our algorithm is illustrated through several numerical experiments.

We describe a simple parallel-friendly lightweight graph reordering algorithm for COO graphs (edge lists). Our ``Batched Order By Attachment'' (BOBA) algorithm is linear in the number of edges in terms of reads and linear in the number of vertices for writes through to main memory. It is highly parallelizable on GPUs\@. We show that, compared to a randomized baseline, the ordering produced gives improved locality of reference in sparse matrix-vector multiplication (SpMV) as well as other graph algorithms. Moreover, it can substantially speed up the conversion from a COO representation to the compressed format CSR, a very common workflow. Thus, it can give \emph{end-to-end} speedups even in SpMV\@. Unlike other lightweight approaches, this reordering does not rely on explicitly knowing the degrees of the vertices, and indeed its runtime is comparable to that of computing degrees. Instead, it uses the structure and edge distribution inherent in the input edge list, making it a candidate for default use in a pragmatic graph creation pipeline. This algorithm is suitable for road-type networks as well as scale-free. It improves cache locality on both CPUs and GPUs, achieving hit rates similar to the heavyweight techniques (e.g., for SpMV, 7--52\% and 11--67\% in the L1 and L2 caches, respectively). Compared to randomly labeled graphs, BOBA-reordered graphs achieve end-to-end speedups of up to 3.45. The reordering time is approximately one order of magnitude faster than existing lightweight techniques and up to 2.5 orders of magnitude faster than heavyweight techniques.

A logical zonotope, which is a new set representation for binary vectors, is introduced in this paper. A logical zonotope is constructed by XOR-ing a binary vector with a combination of other binary vectors called generators. Such a zonotope can represent up to 2^n binary vectors using only n generators. It is shown that logical operations over sets of binary vectors can be performed on the zonotopes' generators and, thus, significantly reduce the computational complexity of various logical operations (e.g., XOR, NAND, AND, OR, and semi-tensor products). Similar to traditional zonotopes' role in the formal verification of dynamical systems over real vector spaces, logical zonotopes can be used to analyze discrete dynamical systems defined over binary vector spaces efficiently. We illustrate the approach and its ability to reduce the computational complexity in two use cases: (1) encryption key discovery of a linear feedback shift register and (2) safety verification of a road traffic intersection protocol.

Quantum adversarial machine learning is an emerging field that studies the vulnerability of quantum learning systems against adversarial perturbations and develops possible defense strategies. Quantum universal adversarial perturbations are small perturbations, which can make different input samples into adversarial examples that may deceive a given quantum classifier. This is a field that was rarely looked into but worthwhile investigating because universal perturbations might simplify malicious attacks to a large extent, causing unexpected devastation to quantum machine learning models. In this paper, we take a step forward and explore the quantum universal perturbations in the context of heterogeneous classification tasks. In particular, we find that quantum classifiers that achieve almost state-of-the-art accuracy on two different classification tasks can be both conclusively deceived by one carefully-crafted universal perturbation. This result is explicitly demonstrated with well-designed quantum continual learning models with elastic weight consolidation method to avoid catastrophic forgetting, as well as real-life heterogeneous datasets from hand-written digits and medical MRI images. Our results provide a simple and efficient way to generate universal perturbations on heterogeneous classification tasks and thus would provide valuable guidance for future quantum learning technologies.

Graph neural networks generalize conventional neural networks to graph-structured data and have received widespread attention due to their impressive representation ability. In spite of the remarkable achievements, the performance of Euclidean models in graph-related learning is still bounded and limited by the representation ability of Euclidean geometry, especially for datasets with highly non-Euclidean latent anatomy. Recently, hyperbolic space has gained increasing popularity in processing graph data with tree-like structure and power-law distribution, owing to its exponential growth property. In this survey, we comprehensively revisit the technical details of the current hyperbolic graph neural networks, unifying them into a general framework and summarizing the variants of each component. More importantly, we present various HGNN-related applications. Last, we also identify several challenges, which potentially serve as guidelines for further flourishing the achievements of graph learning in hyperbolic spaces.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司