亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The recent years have seen remarkable progress in establishing the complexity of the reachability problem for vector addition systems with states (VASS), equivalently known as Petri nets. Existing work primarily considers the case in which both the VASS as well as the initial and target configurations are part of the input. In this paper, we investigate the reachability problem in the setting where the VASS is fixed and only the initial configuration is variable. We show that fixed VASS fully express arithmetic on initial segments of the natural numbers. It follows that there is a very weak reduction from any fixed such number-theoretic predicate (e.g. primality or square-freeness) to reachability in fixed VASS where configurations are presented in unary. If configurations are given in binary, we show that there is a fixed VASS with five counters whose reachability problem is PSPACE-hard.

相關內容

Perception of offensiveness is inherently subjective, shaped by the lived experiences and socio-cultural values of the perceivers. Recent years have seen substantial efforts to build AI-based tools that can detect offensive language at scale, as a means to moderate social media platforms, and to ensure safety of conversational AI technologies such as ChatGPT and Bard. However, existing approaches treat this task as a technical endeavor, built on top of data annotated for offensiveness by a global crowd workforce without any attention to the crowd workers' provenance or the values their perceptions reflect. We argue that cultural and psychological factors play a vital role in the cognitive processing of offensiveness, which is critical to consider in this context. We re-frame the task of determining offensiveness as essentially a matter of moral judgment -- deciding the boundaries of ethically wrong vs. right language within an implied set of socio-cultural norms. Through a large-scale cross-cultural study based on 4309 participants from 21 countries across 8 cultural regions, we demonstrate substantial cross-cultural differences in perceptions of offensiveness. More importantly, we find that individual moral values play a crucial role in shaping these variations: moral concerns about Care and Purity are significant mediating factors driving cross-cultural differences. These insights are of crucial importance as we build AI models for the pluralistic world, where the values they espouse should aim to respect and account for moral values in diverse geo-cultural contexts.

We consider the problem of fairly allocating a set of indivisible goods to a set of strategic agents with additive valuation functions. We assume no monetary transfers and, therefore, a mechanism in our setting is an algorithm that takes as input the reported -- rather than the true -- values of the agents. Our main goal is to explore whether there exist mechanisms that have pure Nash equilibria for every instance and, at the same time, provide fairness guarantees for the allocations that correspond to these equilibria. We focus on two relaxations of envy-freeness, namely envy-freeness up to one good (EF1), and envy-freeness up to any good (EFX), and we positively answer the above question. In particular, we study two algorithms that are known to produce such allocations in the non-strategic setting: Round-Robin (EF1 allocations for any number of agents) and a cut-and-choose algorithm of Plaut and Roughgarden [SIAM Journal of Discrete Mathematics, 2020] (EFX allocations for two agents). For Round-Robin we show that all of its pure Nash equilibria induce allocations that are EF1 with respect to the underlying true values, while for the algorithm of Plaut and Roughgarden we show that the corresponding allocations not only are EFX but also satisfy maximin share fairness, something that is not true for this algorithm in the non-strategic setting! Further, we show that a weaker version of the latter result holds for any mechanism for two agents that always has pure Nash equilibria which all induce EFX allocations.

The growing presence of Artificial Intelligence (AI) in various sectors necessitates systems that accurately reflect societal diversity. This study seeks to envision the operationalization of the ethical imperatives of diversity and inclusion (D&I) within AI ecosystems, addressing the current disconnect between ethical guidelines and their practical implementation. A significant challenge in AI development is the effective operationalization of D&I principles, which is critical to prevent the reinforcement of existing biases and ensure equity across AI applications. This paper proposes a vision of a framework for developing a tool utilizing persona-based simulation by Generative AI (GenAI). The approach aims to facilitate the representation of the needs of diverse users in the requirements analysis process for AI software. The proposed framework is expected to lead to a comprehensive persona repository with diverse attributes that inform the development process with detailed user narratives. This research contributes to the development of an inclusive AI paradigm that ensures future technological advances are designed with a commitment to the diverse fabric of humanity.

Survival Analysis (SA) constitutes the default method for time-to-event modeling due to its ability to estimate event probabilities of sparsely occurring events over time. In this work, we show how to improve the training and inference of SA models by decoupling their full expression into (1) an aggregated baseline hazard, which captures the overall behavior of a given population, and (2) independently distributed survival scores, which model idiosyncratic probabilistic dynamics of its given members, in a fully parametric setting. The proposed inference method is shown to dynamically handle right-censored observation horizons, and to achieve competitive performance when compared to other state-of-the-art methods in a variety of real-world datasets, including computationally inefficient Deep Learning-based SA methods and models that require MCMC for inference. Nevertheless, our method achieves robust results from the outset, while not being subjected to fine-tuning or hyperparameter optimization.

To assess the quality of a probabilistic prediction for stochastic dynamical systems (SDSs), scoring rules assign a numerical score based on the predictive distribution and the measured state. In this paper, we propose an $\epsilon$-logarithm score that generalizes the celebrated logarithm score by considering a neighborhood with radius $\epsilon$. To begin with, we prove that the $\epsilon$-logarithm score is proper (the expected score is optimized when the predictive distribution meets the ground truth) based on discrete approximations. Then, we characterize the probabilistic predictability of an SDS by the optimal expected score and approximate it with an error of scale $\mathcal{O}(\epsilon)$. The approximation quantitatively shows how the system predictability is jointly determined by the neighborhood radius, the differential entropies of process noises, and the system dimension. In addition to the expected score, we also analyze the asymptotic behaviors of the score on individual trajectories. Specifically, we prove that the score on a trajectory will converge to the probabilistic predictability when the process noises are independent and identically distributed. Moreover, the convergence speed against the trajectory length $T$ is of scale $\mathcal{O}(T^{-\frac{1}{2}})$ in the sense of probability. Finally, we apply the predictability analysis to design unpredictable SDSs. Numerical examples are given to elaborate the results.

This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.

Deep neural models in recent years have been successful in almost every field, including extremely complex problem statements. However, these models are huge in size, with millions (and even billions) of parameters, thus demanding more heavy computation power and failing to be deployed on edge devices. Besides, the performance boost is highly dependent on redundant labeled data. To achieve faster speeds and to handle the problems caused by the lack of data, knowledge distillation (KD) has been proposed to transfer information learned from one model to another. KD is often characterized by the so-called `Student-Teacher' (S-T) learning framework and has been broadly applied in model compression and knowledge transfer. This paper is about KD and S-T learning, which are being actively studied in recent years. First, we aim to provide explanations of what KD is and how/why it works. Then, we provide a comprehensive survey on the recent progress of KD methods together with S-T frameworks typically for vision tasks. In general, we consider some fundamental questions that have been driving this research area and thoroughly generalize the research progress and technical details. Additionally, we systematically analyze the research status of KD in vision applications. Finally, we discuss the potentials and open challenges of existing methods and prospect the future directions of KD and S-T learning.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

北京阿比特科技有限公司