We introduce appropriate computable moduli of smoothness to characterize the rate of best approximation by multivariate polynomials on a connected and compact $C^2$-domain $\Omega\subset \mathbb{R}^d$. This new modulus of smoothness is defined via finite differences along the directions of coordinate axes, and along a number of tangential directions from the boundary. With this modulus, we prove both the direct Jackson inequality and the corresponding inverse for the best polynomial approximation in $L_p(\Omega)$. The Jackson inequality is established for the full range of $0<p\leq \infty$, while its proof relies on a recently established Whitney type estimates with constants depending only on certain parameters; and on a highly localized polynomial partitions of unity on a $C^2$-domain which is of independent interest. The inverse inequality is established for $1\leq p\leq \infty$, and its proof relies on a recently proved Bernstein type inequality associated with the tangential derivatives on the boundary of $\Omega$. Such an inequality also allows us to establish the inverse theorem for Ivanov's average moduli of smoothness on general compact $C^2$-domains.
We derive conditions for the existence of fixed points of cone mappings without assuming scalability of functions. Monotonicity and scalability are often inseparable in the literature in the context of searching for fixed points of interference mappings. In applications, such mappings are approximated by non-negative neural networks. It turns out, however, that the process of training non-negative networks requires imposing an artificial constraint on the weights of the model. However, in the case of specific non-negative data, it cannot be said that if the mapping is non-negative, it has only non-negative weights. Therefore, we considered the problem of the existence of fixed points for general neural networks, assuming the conditions of tangency conditions with respect to specific cones. This does not relax the physical assumptions, because even assuming that the input and output are to be non-negative, the weights can have (small, but) less than zero values. Such properties (often found in papers on the interpretability of weights of neural networks) lead to the weakening of the assumptions about the monotonicity or scalability of the mapping associated with the neural network. To the best of our knowledge, this paper is the first to study this phenomenon.
We present a novel quantum algorithm for estimating Gibbs partition functions in sublinear time with respect to the logarithm of the size of the state space. This is the first speed-up of this type to be obtained over the seminal nearly-linear time algorithm of \v{S}tefankovi\v{c}, Vempala and Vigoda [JACM, 2009]. Our result also preserves the quadratic speed-up in precision and spectral gap achieved in previous work by exploiting the properties of quantum Markov chains. As an application, we obtain new polynomial improvements over the best-known algorithms for computing the partition function of the Ising model, and counting the number of $k$-colorings, matchings or independent sets of a graph. Our approach relies on developing new variants of the quantum phase and amplitude estimation algorithms that return nearly unbiased estimates with low variance and without destroying their initial quantum state. We extend these subroutines into a nearly unbiased quantum mean estimator that reduces the variance quadratically faster than the classical empirical mean. No such estimator was known to exist prior to our work. These properties, which are of general interest, lead to better convergence guarantees within the paradigm of simulated annealing for computing partition functions.
Convolutional neural network (CNN) has achieved impressive success in computer vision during the past few decades. The image convolution operation helps CNNs to get good performance on image-related tasks. However, the image convolution has high computation complexity and hard to be implemented. This paper proposes the CEMNet, which can be trained in the frequency domain. The most important motivation of this research is that we can use the straightforward element-wise multiplication operation to replace the image convolution in the frequency domain based on the Cross-Correlation Theorem, which obviously reduces the computation complexity. We further introduce a Weight Fixation mechanism to alleviate the problem of over-fitting, and analyze the working behavior of Batch Normalization, Leaky ReLU, and Dropout in the frequency domain to design their counterparts for CEMNet. Also, to deal with complex inputs brought by Discrete Fourier Transform, we design a two-branches network structure for CEMNet. Experimental results imply that CEMNet achieves good performance on MNIST and CIFAR-10 databases.
Image datasets have been steadily growing in size, harming the feasibility and efficiency of large-scale 3D reconstruction methods. In this paper, a novel approach for scaling Multi-View Stereo (MVS) algorithms up to arbitrarily large collections of images is proposed. Specifically, the problem of reconstructing the 3D model of an entire city is targeted, starting from a set of videos acquired by a moving vehicle equipped with several high-resolution cameras. Initially, the presented method exploits an approximately uniform distribution of poses and geometry and builds a set of overlapping clusters. Then, an Integer Linear Programming (ILP) problem is formulated for each cluster to select an optimal subset of views that guarantees both visibility and matchability. Finally, local point clouds for each cluster are separately computed and merged. Since clustering is independent from pairwise visibility information, the proposed algorithm runs faster than existing literature and allows for a massive parallelization. Extensive testing on urban data are discussed to show the effectiveness and the scalability of this approach.
We propose a new framework for differentially private optimization of convex functions which are Lipschitz in an arbitrary norm $\normx{\cdot}$. Our algorithms are based on a regularized exponential mechanism which samples from the density $\propto \exp(-k(F+\mu r))$ where $F$ is the empirical loss and $r$ is a regularizer which is strongly convex with respect to $\normx{\cdot}$, generalizing a recent work of \cite{GLL22} to non-Euclidean settings. We show that this mechanism satisfies Gaussian differential privacy and solves both DP-ERM (empirical risk minimization) and DP-SCO (stochastic convex optimization), by using localization tools from convex geometry. Our framework is the first to apply to private convex optimization in general normed spaces, and directly recovers non-private SCO rates achieved by mirror descent, as the privacy parameter $\eps \to \infty$. As applications, for Lipschitz optimization in $\ell_p$ norms for all $p \in (1, 2)$, we obtain the first optimal privacy-utility tradeoffs; for $p = 1$, we improve tradeoffs obtained by the recent works \cite{AsiFKT21, BassilyGN21} by at least a logarithmic factor. Our $\ell_p$ norm and Schatten-$p$ norm optimization frameworks are complemented with polynomial-time samplers whose query complexity we explicitly bound.
Understanding how machine learning models generalize to new environments is a critical part of their safe deployment. Recent work has proposed a variety of complexity measures that directly predict or theoretically bound the generalization capacity of a model. However, these methods rely on a strong set of assumptions that in practice are not always satisfied. Motivated by the limited settings in which existing measures can be applied, we propose a novel complexity measure based on the local manifold smoothness of a classifier. We define local manifold smoothness as a classifier's output sensitivity to perturbations in the manifold neighborhood around a given test point. Intuitively, a classifier that is less sensitive to these perturbations should generalize better. To estimate smoothness we sample points using data augmentation and measure the fraction of these points classified into the majority class. Our method only requires selecting a data augmentation method and makes no other assumptions about the model or data distributions, meaning it can be applied even in out-of-domain (OOD) settings where existing methods cannot. In experiments on robustness benchmarks in image classification, sentiment analysis, and natural language inference, we demonstrate a strong and robust correlation between our manifold smoothness measure and actual OOD generalization on over 3,000 models evaluated on over 100 train/test domain pairs.
Zeroth-order optimization methods are developed to overcome the practical hurdle of having knowledge of explicit derivatives. Instead, these schemes work with merely access to noisy functions evaluations. The predominant approach is to mimic first-order methods by means of some gradient estimator. The theoretical limitations are well-understood, yet, as most of these methods rely on finite-differencing for shrinking differences, numerical cancellation can be catastrophic. The numerical community developed an efficient method to overcome this by passing to the complex domain. This approach has been recently adopted by the optimization community and in this work we analyze the practically relevant setting of dealing with computational noise. To exemplify the possibilities we focus on the strongly-convex optimization setting and provide a variety of non-asymptotic results, corroborated by numerical experiments, and end with local non-convex optimization.
In this article, we study approximation properties of the variation spaces corresponding to shallow neural networks with a variety of activation functions. We introduce two main tools for estimating the metric entropy, approximation rates, and $n$-widths of these spaces. First, we introduce the notion of a smoothly parameterized dictionary and give upper bounds on the non-linear approximation rates, metric entropy and $n$-widths of their absolute convex hull. The upper bounds depend upon the order of smoothness of the parameterization. This result is applied to dictionaries of ridge functions corresponding to shallow neural networks, and they improve upon existing results in many cases. Next, we provide a method for lower bounding the metric entropy and $n$-widths of variation spaces which contain certain classes of ridge functions. This result gives sharp lower bounds on the $L^2$-approximation rates, metric entropy, and $n$-widths for variation spaces corresponding to neural networks with a range of important activation functions, including ReLU$^k$ activation functions and sigmoidal activation functions with bounded variation.
In this work, we propose a novel framework for the numerical solution of time-dependent conservation laws with implicit schemes via primal-dual hybrid gradient methods. We solve an initial value problem (IVP) for the partial differential equation (PDE) by casting it as a saddle point of a min-max problem and using iterative optimization methods to find the saddle point. Our approach is flexible with the choice of both time and spatial discretization schemes. It benefits from the implicit structure and gains large regions of stability, and overcomes the restriction on the mesh size in time by explicit schemes from Courant--Friedrichs--Lewy (CFL) conditions (really via von Neumann stability analysis). Nevertheless, it is highly parallelizable and easy-to-implement. In particular, no nonlinear inversions are required! Specifically, we illustrate our approach using the finite difference scheme and discontinuous Galerkin method for the spatial scheme; backward Euler and backward differentiation formulas for implicit discretization in time. Numerical experiments illustrate the effectiveness and robustness of the approach. In future work, we will demonstrate that our idea of replacing an initial-value evolution equation with this primal-dual hybrid gradient approach has great advantages in many other situations.
Lipschitz Bound Estimation is an effective method of regularizing deep neural networks to make them robust against adversarial attacks. This is useful in a variety of applications ranging from reinforcement learning to autonomous systems. In this paper, we highlight the significant gap in obtaining a non-trivial Lipschitz bound certificate for Convolutional Neural Networks (CNNs) and empirically support it with extensive graphical analysis. We also show that unrolling Convolutional layers or Toeplitz matrices can be employed to convert Convolutional Neural Networks (CNNs) to a Fully Connected Network. Further, we propose a simple algorithm to show the existing 20x-50x gap in a particular data distribution between the actual lipschitz constant and the obtained tight bound. We also ran sets of thorough experiments on various network architectures and benchmark them on datasets like MNIST and CIFAR-10. All these proposals are supported by extensive testing, graphs, histograms and comparative analysis.