亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Graph-based collaborative filtering has emerged as a powerful paradigm for delivering personalized recommendations. Despite their demonstrated effectiveness, these methods often neglect the underlying intents of users, which constitute a pivotal facet of comprehensive user interests. Consequently, a series of approaches have arisen to tackle this limitation by introducing independent intent representations. However, these approaches fail to capture the intricate relationships between intents of different users and the compatibility between user intents and item properties. To remedy the above issues, we propose a novel method, named uniformly co-clustered intent modeling. Specifically, we devise a uniformly contrastive intent modeling module to bring together the embeddings of users with similar intents and items with similar properties. This module aims to model the nuanced relations between intents of different users and properties of different items, especially those unreachable to each other on the user-item graph. To model the compatibility between user intents and item properties, we design the user-item co-clustering module, maximizing the mutual information of co-clusters of users and items. This approach is substantiated through theoretical validation, establishing its efficacy in modeling compatibility to enhance the mutual information between user and item representations. Comprehensive experiments on various real-world datasets verify the effectiveness of the proposed framework.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Networking · INFORMS · INTERACT · 可理解性 ·
2023 年 11 月 7 日

IPv6 is a fundamentally different Internet Protocol than IPv4, and IPv6-only networks cannot, by default, communicate with the IPv4 Internet. This lack of interoperability necessitates complex mechanisms for incremental deployment and bridging networks so that non-dual-stack systems can interact with the whole Internet. NAT64 is one such bridging mechanism by which a network allows IPv6-only clients to connect to the entire Internet, leveraging DNS to identify IPv4-only networks, inject IPv6 response addresses pointing to an internal gateway, and seamlessly translate connections. To date, our understanding of NAT64 deployments is limited; what little information exists is largely qualitative, taken from mailing lists and informal discussions. In this work, we present a first look at the active measurement of NAT64 deployment on the Internet focused on deployment prevalence, configuration, and security. We seek to measure NAT64 via two distinct large-scale measurements: 1) open resolvers on the Internet, and 2) client measurements from RIPE Atlas. For both datasets, we broadly find that despite substantial anecdotal reports of NAT64 deployment, measurable deployments are exceedingly sparse. While our measurements do not preclude the large-scale deployment of NAT64, they do point to substantial challenges in measuring deployments with our existing best-known methods. Finally, we also identify problems in NAT64 deployments, with gateways not following the RFC specification and also posing potential security risks.

As the complexity of System-on-Chip (SoC) designs continues to increase, ensuring thorough verification becomes a significant challenge for system integrators. The complexity of verification can result in undetected bugs. Unlike software or firmware bugs, hardware bugs are hard to fix after deployment and they require additional logic, i.e., patching logic integrated with the design in advance in order to patch. However, the absence of a standardized metric for defining "patchability" leaves system integrators relying on their understanding of each IP and security requirements to engineer ad hoc patching designs. In this paper, we propose a theoretical patchability quantification method to analyze designs at the Register Transfer Level (RTL) with provided patching options. Our quantification defines patchability as a combination of observability and controllability so that we can analyze and compare the patchability of IP variations. This quantification is a systematic approach to estimate each patching architecture's ability to patch at run-time and complements existing patching works. In experiments, we compare several design options of the same patching architecture and discuss their differences in terms of theoretical patchability and how many potential weaknesses can be mitigated.

Conventional wheeled robots are unable to traverse scientifically interesting, but dangerous, cave environments. Multi-limbed climbing robot designs, such as ReachBot, are able to grasp irregular surface features and execute climbing motions to overcome obstacles, given suitable grasp locations. To support grasp site identification, we present a method for detecting rock cracks and edges, the SKeleton Intersection Loss (SKIL). SKIL is a loss designed for thin object segmentation that leverages the skeleton of the label. A dataset of rock face images was collected, manually annotated, and augmented with generated data. A new group of metrics, LineAcc, has been proposed for thin object segmentation such that the impact of the object width on the score is minimized. In addition, the metric is less sensitive to translation which can often lead to a score of zero when computing classical metrics such as Dice on thin objects. Our fine-tuned models outperform previous methods on similar thin object segmentation tasks such as blood vessel segmentation and show promise for integration onto a robotic system.

A primary goal in strategic classification is to learn decision rules which are robust to strategic input manipulation. Earlier works assume that strategic responses are known; while some recent works address the important challenge of unknown responses, they exclusively study sequential settings which allow multiple model deployments over time. But there are many domains$\unicode{x2014}$particularly in public policy, a common motivating use-case$\unicode{x2014}$where multiple deployments are unrealistic, or where even a single bad round is undesirable. To address this gap, we initiate the study of strategic classification under unknown responses in the one-shot setting, which requires committing to a single classifier once. Focusing on the users' cost function as the source of uncertainty, we begin by proving that for a broad class of costs, even a small mis-estimation of the true cost can entail arbitrarily low accuracy in the worst case. In light of this, we frame the one-shot task as a minimax problem, with the goal of identifying the classifier with the smallest worst-case risk over an uncertainty set of possible costs. Our main contribution is efficient algorithms for both the full-batch and stochastic settings, which we prove converge (offline) to the minimax optimal solution at the dimension-independent rate of $\tilde{\mathcal{O}}(T^{-\frac{1}{2}})$. Our analysis reveals important structure stemming from the strategic nature of user responses, particularly the importance of dual norm regularization with respect to the cost function.

Controlling chatbot utterance generation with multiple attributes such as personalities, emotions and dialogue acts is a practically useful but under-studied problem. We propose a novel framework called DASC that possesses strong controllability with a weighted decoding paradigm, while improving generation quality with the grounding in an attribute semantics space. Generation with multiple attributes is then intuitively implemented with an interpolation of multiple attribute embeddings, which results in substantial reduction in the model sizes. Experiments show that DASC can achieve high control accuracy in generation task with the simultaneous control of 3 aspects while also producing interesting and reasonably sensible responses, even in an out-of-distribution robustness test.

We consider the problem of discrimination between two pure quantum states. It is well known that the optimal measurement under both the error-probability and log-loss criteria is a projection, while under an ``erasure-distortion'' criterion it is a three-outcome positive operator-valued measure (POVM). These results were derived separately. We present a unified approach which finds the optimal measurement under any distortion measure that satisfies a convexity relation with respect to the Bhattacharyya distance. Namely, whenever the measure is relatively convex (resp. concave), the measurement is the projection (resp. three-outcome POVM) above. The three above-mentioned results are obtained as special cases of this simple derivation. As for further measures for which our result applies, we prove that Renyi entropies of order $1$ and above (resp. $1/2$ and below) are relatively convex (resp. concave). A special setting of great practical interest, is the discrimination between two coherent-light waveforms. In a remarkable work by Dolinar it was shown that a simple detector consisting of a photon counter and a feedback-controlled local oscillator obtains the quantum-optimal error probability. Later it was shown that the same detector (with the same local signal) is also optimal in the log-loss sense. By applying a similar convexity approach, we obtain in a unified manner the optimal signal for a variety of criteria.

Grasping occluded objects in cluttered environments is an essential component in complex robotic manipulation tasks. In this paper, we introduce an AffordanCE-driven Next-Best-View planning policy (ACE-NBV) that tries to find a feasible grasp for target object via continuously observing scenes from new viewpoints. This policy is motivated by the observation that the grasp affordances of an occluded object can be better-measured under the view when the view-direction are the same as the grasp view. Specifically, our method leverages the paradigm of novel view imagery to predict the grasps affordances under previously unobserved view, and select next observation view based on the highest imagined grasp quality of the target object. The experimental results in simulation and on a real robot demonstrate the effectiveness of the proposed affordance-driven next-best-view planning policy. Project page: //sszxc.net/ace-nbv/.

Accurate estimation of conditional average treatment effects (CATE) is at the core of personalized decision making. While there is a plethora of models for CATE estimation, model selection is a nontrivial task, due to the fundamental problem of causal inference. Recent empirical work provides evidence in favor of proxy loss metrics with double robust properties and in favor of model ensembling. However, theoretical understanding is lacking. Direct application of prior theoretical work leads to suboptimal oracle model selection rates due to the non-convexity of the model selection problem. We provide regret rates for the major existing CATE ensembling approaches and propose a new CATE model ensembling approach based on Q-aggregation using the doubly robust loss. Our main result shows that causal Q-aggregation achieves statistically optimal oracle model selection regret rates of $\frac{\log(M)}{n}$ (with $M$ models and $n$ samples), with the addition of higher-order estimation error terms related to products of errors in the nuisance functions. Crucially, our regret rate does not require that any of the candidate CATE models be close to the truth. We validate our new method on many semi-synthetic datasets and also provide extensions of our work to CATE model selection with instrumental variables and unobserved confounding.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

北京阿比特科技有限公司