亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Modeling 3D scenes by volumetric feature grids is one of the promising directions of neural approximations to improve Neural Radiance Fields (NeRF). Instant-NGP (INGP) introduced multi-resolution hash encoding from a lookup table of trainable feature grids which enabled learning high-quality neural graphics primitives in a matter of seconds. However, this improvement came at the cost of higher storage size. In this paper, we address this challenge by introducing instant learning of compression-aware NeRF features (CAwa-NeRF), that allows exporting the zip compressed feature grids at the end of the model training with a negligible extra time overhead without changing neither the storage architecture nor the parameters used in the original INGP paper. Nonetheless, the proposed method is not limited to INGP but could also be adapted to any model. By means of extensive simulations, our proposed instant learning pipeline can achieve impressive results on different kinds of static scenes such as single object masked background scenes and real-life scenes captured in our studio. In particular, for single object masked background scenes CAwa-NeRF compresses the feature grids down to 6% (1.2 MB) of the original size without any loss in the PSNR (33 dB) or down to 2.4% (0.53 MB) with a slight virtual loss (32.31 dB).

相關內容

In recent years, pre-trained large language models (LLMs) have achieved tremendous success in the field of Natural Language Processing (NLP). Prior studies have primarily focused on general and generic domains, with relatively less research on specialized LLMs in the medical field. The specialization and high accuracy requirements for diagnosis in the medical field, as well as the challenges in collecting large-scale data, have constrained the application and development of LLMs in medical scenarios. In the field of ophthalmology, clinical diagnosis mainly relies on doctors' interpretation of reports and making diagnostic decisions. In order to take advantage of LLMs to provide decision support for doctors, we collected three modalities of ophthalmic report data and fine-tuned the LLaMA2 model, successfully constructing an LLM termed the "Ophtha-LLaMA2" specifically tailored for ophthalmic disease diagnosis. Inference test results show that even with a smaller fine-tuning dataset, Ophtha-LLaMA2 performs significantly better in ophthalmic diagnosis compared to other LLMs. It demonstrates that the Ophtha-LLaMA2 exhibits satisfying accuracy and efficiency in ophthalmic disease diagnosis, making it a valuable tool for ophthalmologists to provide improved diagnostic support for patients. This research provides a useful reference for the application of LLMs in the field of ophthalmology, while showcasing the immense potential and prospects in this domain.

Recent studies have shown that attackers can catastrophically reduce the performance of GNNs by maliciously modifying the graph structure or node features on the graph. Adversarial training, which has been shown to be one of the most effective defense mechanisms against adversarial attacks in computer vision, holds great promise for enhancing the robustness of GNNs. There is limited research on defending against attacks by performing adversarial training on graphs, and it is crucial to delve deeper into this approach to optimize its effectiveness. Therefore, based on robust adversarial training on graphs, we propose a hierarchical constraint refinement framework (HC-Ref) that enhances the anti-perturbation capabilities of GNNs and downstream classifiers separately, ultimately leading to improved robustness. We propose corresponding adversarial regularization terms that are conducive to adaptively narrowing the domain gap between the normal part and the perturbation part according to the characteristics of different layers, promoting the smoothness of the predicted distribution of both parts. Moreover, existing research on graph robust adversarial training primarily concentrates on training from the standpoint of node feature perturbations and seldom takes into account alterations in the graph structure. This limitation makes it challenging to prevent attacks based on topological changes in the graph. This paper generates adversarial examples by utilizing graph structure perturbations, offering an effective approach to defend against attack methods that are based on topological changes. Extensive experiments on two real-world graph benchmarks show that HC-Ref successfully resists various attacks and has better node classification performance compared to several baseline methods.

Canonical Correlation Analysis (CCA) has been widely applied to jointly embed multiple views of data in a maximally correlated latent space. However, the alignment between various data perspectives, which is required by traditional approaches, is unclear in many practical cases. In this work we propose a new framework Aligned Canonical Correlation Analysis (ACCA), to address this challenge by iteratively solving the alignment and multi-view embedding.

Learning scene graphs from natural language descriptions has proven to be a cheap and promising scheme for Scene Graph Generation (SGG). However, such unstructured caption data and its processing are troubling the learning an acurrate and complete scene graph. This dilema can be summarized as three points. First, traditional language parsers often fail to extract meaningful relationship triplets from caption data. Second, grounding unlocalized objects in parsed triplets will meet ambiguity in visual-language alignment. Last, caption data typically are sparse and exhibit bias to partial observations of image content. These three issues make it hard for the model to generate comprehensive and accurate scene graphs. To fill this gap, we propose a simple yet effective framework, GPT4SGG, to synthesize scene graphs from holistic and region-specific narratives. The framework discards traditional language parser, and localize objects before obtaining relationship triplets. To obtain relationship triplets, holistic and dense region-specific narratives are generated from the image. With such textual representation of image data and a task-specific prompt, an LLM, particularly GPT-4, directly synthesizes a scene graph as "pseudo labels". Experimental results showcase GPT4SGG significantly improves the performance of SGG models trained on image-caption data. We believe this pioneering work can motivate further research into mining the visual reasoning capabilities of LLMs.

Stable diffusion is the mainstay of the text-to-image (T2I) synthesis in the community due to its generation performance and open-source nature. Recently, Stable Diffusion XL (SDXL), the successor of stable diffusion, has received a lot of attention due to its significant performance improvements with a higher resolution of 1024x1024 and a larger model. However, its increased computation cost and model size require higher-end hardware(e.g., bigger VRAM GPU) for end-users, incurring higher costs of operation. To address this problem, in this work, we propose an efficient latent diffusion model for text-to-image synthesis obtained by distilling the knowledge of SDXL. To this end, we first perform an in-depth analysis of the denoising U-Net in SDXL, which is the main bottleneck of the model, and then design a more efficient U-Net based on the analysis. Secondly, we explore how to effectively distill the generation capability of SDXL into an efficient U-Net and eventually identify four essential factors, the core of which is that self-attention is the most important part. With our efficient U-Net and self-attention-based knowledge distillation strategy, we build our efficient T2I models, called KOALA-1B & -700M, while reducing the model size up to 54% and 69% of the original SDXL model. In particular, the KOALA-700M is more than twice as fast as SDXL while still retaining a decent generation quality. We hope that due to its balanced speed-performance tradeoff, our KOALA models can serve as a cost-effective alternative to SDXL in resource-constrained environments.

Entity resolution (ER) is an important data integration task with a wide spectrum of applications. The state-of-the-art solutions on ER rely on pre-trained language models (PLMs), which require fine-tuning on a lot of labeled matching/non-matching entity pairs. Recently, large languages models (LLMs), such as GPT-4, have shown the ability to perform many tasks without tuning model parameters, which is known as in-context learning (ICL) that facilitates effective learning from a few labeled input context demonstrations. However, existing ICL approaches to ER typically necessitate providing a task description and a set of demonstrations for each entity pair and thus have limitations on the monetary cost of interfacing LLMs. To address the problem, in this paper, we provide a comprehensive study to investigate how to develop a cost-effective batch prompting approach to ER. We introduce a framework BATCHER consisting of demonstration selection and question batching and explore different design choices that support batch prompting for ER. We also devise a covering-based demonstration selection strategy that achieves an effective balance between matching accuracy and monetary cost. We conduct a thorough evaluation to explore the design space and evaluate our proposed strategies. Through extensive experiments, we find that batch prompting is very cost-effective for ER, compared with not only PLM-based methods fine-tuned with extensive labeled data but also LLM-based methods with manually designed prompting. We also provide guidance for selecting appropriate design choices for batch prompting.

This paper presents the reproduction of two studies focused on the perception of micro and macro expressions of Virtual Humans (VHs) generated by Computer Graphics (CG), first described in 2014 and replicated in 2021. The 2014 study referred to a VH realistic, whereas, in 2021, it referred to a VH cartoon. In our work, we replicate the study by using a realistic CG character. Our main goals are to compare the perceptions of micro and macro expressions between levels of realism (2021 cartoon versus 2023 realistic) and between realistic characters in different periods (i.e., 2014 versus 2023). In one of our results, people more easily recognized micro expressions in realistic VHs than in a cartoon VH. In another result, we show that the participants' perception was similar for both micro and macro expressions in 2014 and 2023.

The Image Captioning (IC) technique is widely used to describe images in natural language. Recently, some IC system testing methods have been proposed. However, these methods still rely on pre-annotated information and hence cannot really alleviate the oracle problem in testing. Besides, their method artificially manipulates objects, which may generate unreal images as test cases and thus lead to less meaningful testing results. Thirdly, existing methods have various requirements on the eligibility of source test cases, and hence cannot fully utilize the given images to perform testing. To tackle these issues, in this paper, we propose REIC to perform metamorphic testing for IC systems with some image-level reduction transformations like image cropping and stretching. Instead of relying on the pre-annotated information, REIC uses a localization method to align objects in the caption with corresponding objects in the image, and checks whether each object is correctly described or deleted in the caption after transformation. With the image-level reduction transformations, REIC does not artificially manipulate any objects and hence can avoid generating unreal follow-up images. Besides, it eliminates the requirement on the eligibility of source test cases in the metamorphic transformation process, as well as decreases the ambiguity and boosts the diversity among the follow-up test cases, which consequently enables testing to be performed on any test image and reveals more distinct valid violations. We employ REIC to test five popular IC systems. The results demonstrate that REIC can sufficiently leverage the provided test images to generate follow-up cases of good reality, and effectively detect a great number of distinct violations, without the need for any pre-annotated information.

An effective and efficient architecture performance evaluation scheme is essential for the success of Neural Architecture Search (NAS). To save computational cost, most of existing NAS algorithms often train and evaluate intermediate neural architectures on a small proxy dataset with limited training epochs. But it is difficult to expect an accurate performance estimation of an architecture in such a coarse evaluation way. This paper advocates a new neural architecture evaluation scheme, which aims to determine which architecture would perform better instead of accurately predict the absolute architecture performance. Therefore, we propose a \textbf{relativistic} architecture performance predictor in NAS (ReNAS). We encode neural architectures into feature tensors, and further refining the representations with the predictor. The proposed relativistic performance predictor can be deployed in discrete searching methods to search for the desired architectures without additional evaluation. Experimental results on NAS-Bench-101 dataset suggests that, sampling 424 ($0.1\%$ of the entire search space) neural architectures and their corresponding validation performance is already enough for learning an accurate architecture performance predictor. The accuracies of our searched neural architectures on NAS-Bench-101 and NAS-Bench-201 datasets are higher than that of the state-of-the-art methods and show the priority of the proposed method.

We study the problem of efficient semantic segmentation for large-scale 3D point clouds. By relying on expensive sampling techniques or computationally heavy pre/post-processing steps, most existing approaches are only able to be trained and operate over small-scale point clouds. In this paper, we introduce RandLA-Net, an efficient and lightweight neural architecture to directly infer per-point semantics for large-scale point clouds. The key to our approach is to use random point sampling instead of more complex point selection approaches. Although remarkably computation and memory efficient, random sampling can discard key features by chance. To overcome this, we introduce a novel local feature aggregation module to progressively increase the receptive field for each 3D point, thereby effectively preserving geometric details. Extensive experiments show that our RandLA-Net can process 1 million points in a single pass with up to 200X faster than existing approaches. Moreover, our RandLA-Net clearly surpasses state-of-the-art approaches for semantic segmentation on two large-scale benchmarks Semantic3D and SemanticKITTI.

北京阿比特科技有限公司