This paper introduces Honor of Kings Arena, a reinforcement learning (RL) environment based on Honor of Kings, one of the world's most popular games at present. Compared to other environments studied in most previous work, ours presents new generalization challenges for competitive reinforcement learning. It is a multi-agent problem with one agent competing against its opponent; and it requires the generalization ability as it has diverse targets to control and diverse opponents to compete with. We describe the observation, action, and reward specifications for the Honor of Kings domain and provide an open-source Python-based interface for communicating with the game engine. We provide twenty target heroes with a variety of tasks in Honor of Kings Arena and present initial baseline results for RL-based methods with feasible computing resources. Finally, we showcase the generalization challenges imposed by Honor of Kings Arena and possible remedies to the challenges. All of the software, including the environment-class, are publicly available at //github.com/tencent-ailab/hok_env . The documentation is available at //aiarena.tencent.com/hok/doc/ .
The widespread availability of search API's (both free and commercial) brings the promise of increased coverage and quality of search results for metasearch engines, while decreasing the maintenance costs of the crawling and indexing infrastructures. However, merging strategies frequently comprise complex pipelines that require careful tuning, which is often overlooked in the literature. In this work, we describe NeuralSearchX, a metasearch engine based on a multi-purpose large reranking model to merge results and highlight sentences. Due to the homogeneity of our architecture, we could focus our optimization efforts on a single component. We compare our system with Microsoft's Biomedical Search and show that our design choices led to a much cost-effective system with competitive QPS while having close to state-of-the-art results on a wide range of public benchmarks. Human evaluation on two domain-specific tasks shows that our retrieval system outperformed Google API by a large margin in terms of nDCG@10 scores. By describing our architecture and implementation in detail, we hope that the community will build on our design choices. The system is available at //neuralsearchx.nsx.ai.
Nowadays, Deep Learning (DL) methods often overcome the limitations of traditional signal processing approaches. Nevertheless, DL methods are barely applied in real-life applications. This is mainly due to limited robustness and distributional shift between training and test data. To this end, recent work has proposed uncertainty mechanisms to increase their reliability. Besides, meta-learning aims at improving the generalization capability of DL models. By taking advantage of that, this paper proposes an uncertainty-based Meta-Reinforcement Learning (Meta-RL) approach with Out-of-Distribution (OOD) detection. The presented method performs a given task in unseen environments and provides information about its complexity. This is done by determining first and second-order statistics on the estimated reward. Using information about its complexity, the proposed algorithm is able to point out when tracking is reliable. To evaluate the proposed method, we benchmark it on a radar-tracking dataset. There, we show that our method outperforms related Meta-RL approaches on unseen tracking scenarios in peak performance by 16% and the baseline by 35% while detecting OOD data with an F1-Score of 72%. This shows that our method is robust to environmental changes and reliably detects OOD scenarios.
Recently introduced distributed zeroth-order optimization (ZOO) algorithms have shown their utility in distributed reinforcement learning (RL). Unfortunately, in the gradient estimation process, almost all of them require random samples with the same dimension as the global variable and/or require evaluation of the global cost function, which may induce high estimation variance for large-scale networks. In this paper, we propose a novel distributed zeroth-order algorithm by leveraging the network structure inherent in the optimization objective, which allows each agent to estimate its local gradient by local cost evaluation independently, without use of any consensus protocol. The proposed algorithm exhibits an asynchronous update scheme, and is designed for stochastic non-convex optimization with a possibly non-convex feasible domain based on the block coordinate descent method. The algorithm is later employed as a distributed model-free RL algorithm for distributed linear quadratic regulator design, where a learning graph is designed to describe the required interaction relationship among agents in distributed learning. We provide an empirical validation of the proposed algorithm to benchmark its performance on convergence rate and variance against a centralized ZOO algorithm.
Reinforcement learning is applied to solve actual complex tasks from high-dimensional, sensory inputs. The last decade has developed a long list of reinforcement learning algorithms. Recent progress benefits from deep learning for raw sensory signal representation. One question naturally arises: how well do they perform concerning different robotic manipulation tasks? Benchmarks use objective performance metrics to offer a scientific way to compare algorithms. In this paper, we present RMBench, the first benchmark for robotic manipulations, which have high-dimensional continuous action and state spaces. We implement and evaluate reinforcement learning algorithms that directly use observed pixels as inputs. We report their average performance and learning curves to show their performance and stability of training. Our study concludes that none of the studied algorithms can handle all tasks well, soft Actor-Critic outperforms most algorithms in average reward and stability, and an algorithm combined with data augmentation may facilitate learning policies. Our code is publicly available at //github.com/xiangyanfei212/RMBench-2022, including all benchmark tasks and studied algorithms.
Despite impressive successes, deep reinforcement learning (RL) systems still fall short of human performance on generalization to new tasks and environments that differ from their training. As a benchmark tailored for studying RL generalization, we introduce Avalon, a set of tasks in which embodied agents in highly diverse procedural 3D worlds must survive by navigating terrain, hunting or gathering food, and avoiding hazards. Avalon is unique among existing RL benchmarks in that the reward function, world dynamics, and action space are the same for every task, with tasks differentiated solely by altering the environment; its 20 tasks, ranging in complexity from eat and throw to hunt and navigate, each create worlds in which the agent must perform specific skills in order to survive. This setup enables investigations of generalization within tasks, between tasks, and to compositional tasks that require combining skills learned from previous tasks. Avalon includes a highly efficient simulator, a library of baselines, and a benchmark with scoring metrics evaluated against hundreds of hours of human performance, all of which are open-source and publicly available. We find that standard RL baselines make progress on most tasks but are still far from human performance, suggesting Avalon is challenging enough to advance the quest for generalizable RL.
Visual reinforcement learning (RL), which makes decisions directly from high-dimensional visual inputs, has demonstrated significant potential in various domains. However, deploying visual RL techniques in the real world remains challenging due to their low sample efficiency and large generalization gaps. To tackle these obstacles, data augmentation (DA) has become a widely used technique in visual RL for acquiring sample-efficient and generalizable policies by diversifying the training data. This survey aims to provide a timely and essential review of DA techniques in visual RL in recognition of the thriving development in this field. In particular, we propose a unified framework for analyzing visual RL and understanding the role of DA in it. We then present a principled taxonomy of the existing augmentation techniques used in visual RL and conduct an in-depth discussion on how to better leverage augmented data in different scenarios. Moreover, we report a systematic empirical evaluation of DA-based techniques in visual RL and conclude by highlighting the directions for future research. As the first comprehensive survey of DA in visual RL, this work is expected to offer valuable guidance to this emerging field.
While AI algorithms have shown remarkable success in various fields, their lack of transparency hinders their application to real-life tasks. Although explanations targeted at non-experts are necessary for user trust and human-AI collaboration, the majority of explanation methods for AI are focused on developers and expert users. Counterfactual explanations are local explanations that offer users advice on what can be changed in the input for the output of the black-box model to change. Counterfactuals are user-friendly and provide actionable advice for achieving the desired output from the AI system. While extensively researched in supervised learning, there are few methods applying them to reinforcement learning (RL). In this work, we explore the reasons for the underrepresentation of a powerful explanation method in RL. We start by reviewing the current work in counterfactual explanations in supervised learning. Additionally, we explore the differences between counterfactual explanations in supervised learning and RL and identify the main challenges that prevent adoption of methods from supervised in reinforcement learning. Finally, we redefine counterfactuals for RL and propose research directions for implementing counterfactuals in RL.
Despite the fast development of multi-agent reinforcement learning (MARL) methods, there is a lack of commonly-acknowledged baseline implementation and evaluation platforms. As a result, an urgent need for MARL researchers is to develop an integrated library suite, similar to the role of RLlib in single-agent RL, that delivers reliable MARL implementation and replicable evaluation in various benchmarks. To fill such a research gap, in this paper, we propose Multi-Agent RLlib (MARLlib), a comprehensive MARL algorithm library that facilitates RLlib for solving multi-agent problems. With a novel design of agent-level distributed dataflow, MARLlib manages to unify tens of algorithms, including different types of independent learning, centralized critic, and value decomposition methods; this leads to a highly composable integration of MARL algorithms that are not possible to unify before. Furthermore, MARLlib goes beyond current work by integrating diverse environment interfaces and providing flexible parameter sharing strategies; this allows to create versatile solutions to cooperative, competitive, and mixed tasks with minimal code modifications for end users. A plethora of experiments are conducted to substantiate the correctness of our implementation, based on which we further derive new insights on the relationship between the performance and the design of algorithmic components. With MARLlib, we expect researchers to be able to tackle broader real-world multi-agent problems with trustworthy solutions. Our code\footnote{\url{//github.com/Replicable-MARL/MARLlib}} and documentation\footnote{\url{//marllib.readthedocs.io/}} are released for reference.
Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.
This paper surveys the field of transfer learning in the problem setting of Reinforcement Learning (RL). RL has been the key solution to sequential decision-making problems. Along with the fast advance of RL in various domains. including robotics and game-playing, transfer learning arises as an important technique to assist RL by leveraging and transferring external expertise to boost the learning process. In this survey, we review the central issues of transfer learning in the RL domain, providing a systematic categorization of its state-of-the-art techniques. We analyze their goals, methodologies, applications, and the RL frameworks under which these transfer learning techniques would be approachable. We discuss the relationship between transfer learning and other relevant topics from an RL perspective and also explore the potential challenges as well as future development directions for transfer learning in RL.