Millions of smart contracts have been deployed onto the Ethereum platform, posing potential attack subjects. Therefore, analyzing contract binaries is vital since their sources are unavailable, involving identification comprising function entry identification and detecting its boundaries. Such boundaries are critical to many smart contract applications, e.g. reverse engineering and profiling. Unfortunately, it is challenging to identify functions from these stripped contract binaries due to the lack of internal function call statements and the compiler-inducing instruction reshuffling. Recently, several existing works excessively relied on a set of handcrafted heuristic rules which impose several faults. To address this issue, we propose a novel neural network-based framework for EVM bytecode Function Entries and Boundaries Identification (neural-FEBI) that does not rely on a fixed set of handcrafted rules. Instead, it used a two-level bi-Long Short-Term Memory network and a Conditional Random Field network to locate the function entries. The suggested framework also devises a control flow traversal algorithm to determine the code segments reachable from the function entry as its boundary. Several experiments on 38,996 publicly available smart contracts collected as binary demonstrate that neural-FEBI confirms the lowest and highest F1-scores for the function entries identification task across different datasets of 88.3 to 99.7, respectively. Its performance on the function boundary identification task is also increased from 79.4% to 97.1% compared with state-of-the-art. We further demonstrate that the identified function information can be used to construct more accurate intra-procedural CFGs and call graphs. The experimental results confirm that the proposed framework significantly outperforms state-of-the-art, often based on handcrafted heuristic rules.
The core problem in zero-shot open vocabulary detection is how to align visual and text features, so that the detector performs well on unseen classes. Previous approaches train the feature pyramid and detection head from scratch, which breaks the vision-text feature alignment established during pretraining, and struggles to prevent the language model from forgetting unseen classes. We propose three methods to alleviate these issues. Firstly, a simple scheme is used to augment the text embeddings which prevents overfitting to a small number of classes seen during training, while simultaneously saving memory and computation. Secondly, the feature pyramid network and the detection head are modified to include trainable gated shortcuts, which encourages vision-text feature alignment and guarantees it at the start of detection training. Finally, a self-training approach is used to leverage a larger corpus of image-text pairs thus improving detection performance on classes with no human annotated bounding boxes. Our three methods are evaluated on the zero-shot version of the LVIS benchmark, each of them showing clear and significant benefits. Our final network achieves the new stateof-the-art on the mAP-all metric and demonstrates competitive performance for mAP-rare, as well as superior transfer to COCO and Objects365.
As robots become more prevalent, optimizing their design for better performance and efficiency is becoming increasingly important. However, current robot design practices overlook the impact of perception and design choices on a robot's learning capabilities. To address this gap, we propose a comprehensive methodology that accounts for the interplay between the robot's perception, hardware characteristics, and task requirements. Our approach optimizes the robot's morphology holistically, leading to improved learning and task execution proficiency. To achieve this, we introduce a Morphology-AGnostIc Controller (MAGIC), which helps with the rapid assessment of different robot designs. The MAGIC policy is efficiently trained through a novel PRIvileged Single-stage learning via latent alignMent (PRISM) framework, which also encourages behaviors that are typical of robot onboard observation. Our simulation-based results demonstrate that morphologies optimized holistically improve the robot performance by 15-20% on various manipulation tasks, and require 25x less data to match human-expert made morphology performance. In summary, our work contributes to the growing trend of learning-based approaches in robotics and emphasizes the potential in designing robots that facilitate better learning.
We study the complexity of high-dimensional approximation in the $L_2$-norm when different classes of information are available; we compare the power of function evaluations with the power of arbitrary continuous linear measurements. Here, we discuss the situation when the number of linear measurements required to achieve an error $\varepsilon \in (0,1)$ in dimension $d\in\mathbb{N}$ depends only poly-logarithmically on $\varepsilon^{-1}$. This corresponds to an exponential order of convergence of the approximation error, which often happens in applications. However, it does not mean that the high-dimensional approximation problem is easy, the main difficulty usually lies within the dependence on the dimension $d$. We determine to which extent the required amount of information changes, if we allow only function evaluation instead of arbitrary linear information. It turns out that in this case we only lose very little, and we can even restrict to linear algorithms. In particular, several notions of tractability hold simultaneously for both types of available information.
Many recent pattern recognition applications rely on complex distributed architectures in which sensing and computational nodes interact together through a communication network. Deep neural networks (DNNs) play an important role in this scenario, furnishing powerful decision mechanisms, at the price of a high computational effort. Consequently, powerful state-of-the-art DNNs are frequently split over various computational nodes, e.g., a first part stays on an embedded device and the rest on a server. Deciding where to split a DNN is a challenge in itself, making the design of deep learning applications even more complicated. Therefore, we propose Split-Et-Impera, a novel and practical framework that i) determines the set of the best-split points of a neural network based on deep network interpretability principles without performing a tedious try-and-test approach, ii) performs a communication-aware simulation for the rapid evaluation of different neural network rearrangements, and iii) suggests the best match between the quality of service requirements of the application and the performance in terms of accuracy and latency time.
Security and privacy are important concerns in machine learning. End user devices often contain a wealth of data and this information is sensitive and should not be shared with servers or enterprises. As a result, federated learning was introduced to enable machine learning over large decentralized datasets while promising privacy by eliminating the need for data sharing. However, prior work has shown that shared gradients often contain private information and attackers can gain knowledge either through malicious modification of the architecture and parameters or by using optimization to approximate user data from the shared gradients. Despite this, most attacks have so far been limited in scale of number of clients, especially failing when client gradients are aggregated together using secure model aggregation. The attacks that still function are strongly limited in the number of clients attacked, amount of training samples they leak, or number of iterations they take to be trained. In this work, we introduce MANDRAKE, an attack that overcomes previous limitations to directly leak large amounts of client data even under secure aggregation across large numbers of clients. Furthermore, we break the anonymity of aggregation as the leaked data is identifiable and directly tied back to the clients they come from. We show that by sending clients customized convolutional parameters, the weight gradients of data points between clients will remain separate through aggregation. With an aggregation across many clients, prior work could only leak less than 1% of images. With the same number of non-zero parameters, and using only a single training iteration, MANDRAKE leaks 70-80% of data samples.
This paper considers the automatic classification of herding behavior in the cluttered low-visibility environment that typically surrounds towed fishing gear. The paper compares three convolutional and attention-based deep action recognition network architectures trained end-to-end on a small set of video sequences captured by a remotely controlled camera and classified by an expert in fishing technology. The sequences depict a scene in front of a fishing trawl where the conventional herding mechanism has been replaced by directed laser light. The goal is to detect the presence of a fish in the sequence and classify whether or not the fish reacts to the lasers. A two-stream CNN model, a CNN-transformer hybrid, and a pure transformer model were trained end-to-end to achieve 63%, 54%, and 60% 10-fold classification accuracy on the three-class task when compared to the human expert. Inspection of the activation maps learned by the three networks raises questions about the attributes of the sequences the models may be learning, specifically whether changes in viewpoint introduced by human camera operators that affect the position of laser lines in the video frames may interfere with the classification. This underlines the importance of careful experimental design when capturing scientific data for automatic end-to-end evaluation and the usefulness of inspecting the trained models.
In this paper, we consider the problem of temporal action localization under low-shot (zero-shot & few-shot) scenario, with the goal of detecting and classifying the action instances from arbitrary categories within some untrimmed videos, even not seen at training time. We adopt a Transformer-based two-stage action localization architecture with class-agnostic action proposal, followed by open-vocabulary classification. We make the following contributions. First, to compensate image-text foundation models with temporal motions, we improve category-agnostic action proposal by explicitly aligning embeddings of optical flows, RGB and texts, which has largely been ignored in existing low-shot methods. Second, to improve open-vocabulary action classification, we construct classifiers with strong discriminative power, i.e., avoid lexical ambiguities. To be specific, we propose to prompt the pre-trained CLIP text encoder either with detailed action descriptions (acquired from large-scale language models), or visually-conditioned instance-specific prompt vectors. Third, we conduct thorough experiments and ablation studies on THUMOS14 and ActivityNet1.3, demonstrating the superior performance of our proposed model, outperforming existing state-of-the-art approaches by one significant margin.
Existing research on merging behavior generally prioritize the application of various algorithms, but often overlooks the fine-grained process and analysis of trajectories. This leads to the neglect of surrounding vehicle matching, the opaqueness of indicators definition, and reproducible crisis. To address these gaps, this paper presents a reproducible approach to merging behavior analysis. Specifically, we outline the causes of subjectivity and irreproducibility in existing studies. Thereafter, we employ lanelet2 High Definition (HD) map to construct a reproducible framework, that minimizes subjectivities, defines standardized indicators, identifies alongside vehicles, and divides scenarios. A comparative macroscopic and microscopic analysis is subsequently conducted. More importantly, this paper adheres to the Reproducible Research concept, providing all the source codes and reproduction instructions. Our results demonstrate that although scenarios with alongside vehicles occur in less than 6% of cases, their characteristics are significantly different from others, and these scenarios are often accompanied by high risk. This paper refines the understanding of merging behavior, raises awareness of reproducible studies, and serves as a watershed moment.
Large Language Models (LLMs) have so far impressed the world, with unprecedented capabilities that emerge in models at large scales. On the vision side, transformer models (i.e., ViT) are following the same trend, achieving the best performance on challenging benchmarks. With the abundance of such unimodal models, a natural question arises; do we need also to follow this trend to tackle multimodal tasks? In this work, we propose to rather direct effort to efficient adaptations of existing models, and propose to augment Language Models with perception. Existing approaches for adapting pretrained models for vision-language tasks still rely on several key components that hinder their efficiency. In particular, they still train a large number of parameters, rely on large multimodal pretraining, use encoders (e.g., CLIP) trained on huge image-text datasets, and add significant inference overhead. In addition, most of these approaches have focused on Zero-Shot and In Context Learning, with little to no effort on direct finetuning. We investigate the minimal computational effort needed to adapt unimodal models for multimodal tasks and propose a new challenging setup, alongside different approaches, that efficiently adapts unimodal pretrained models. We show that by freezing more than 99\% of total parameters, training only one linear projection layer, and prepending only one trainable token, our approach (dubbed eP-ALM) significantly outperforms other baselines on VQA and Captioning across Image, Video, and Audio modalities, following the proposed setup. The code will be available here: //github.com/mshukor/eP-ALM.
The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.