亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The lack of freely available standardized datasets represents an aggravating factor during the development and testing the performance of novel computational techniques in exposure assessment and dosimetry research. This hinders progress as researchers are required to generate numerical data (field, power and temperature distribution) anew using simulation software for each exposure scenario. Other than being time consuming, this approach is highly susceptible to errors that occur during the configuration of the electromagnetic model. To address this issue, in this paper, the limited available data on the incident power density and resultant maximum temperature rise on the skin surface considering various steady-state exposure scenarios at 10$-$90 GHz have been statistically modeled. The synthetic data have been sampled from the fitted statistical multivariate distribution with respect to predetermined dosimetric constraints. We thus present a comprehensive and open-source dataset compiled of the high-fidelity numerical data considering various exposures to a realistic source. Furthermore, different surrogate models for predicting maximum temperature rise on the skin surface were fitted based on the synthetic dataset. All surrogate models were tested on the originally available data where satisfactory predictive performance has been demonstrated. A simple technique of combining quadratic polynomial and tensor-product spline surrogates, each operating on its own cluster of data, has achieved the lowest mean absolute error of 0.058 {\deg}C. Therefore, overall experimental results indicate the validity of the proposed synthetic dataset.

相關內容

數據集,又稱為資料集、數據集合或資料集合,是一種由數據所組成的集合。
Data set(或dataset)是一個數據的集合,通常以表格形式出現。每一列代表一個特定變量。每一行都對應于某一成員的數據集的問題。它列出的價值觀為每一個變量,如身高和體重的一個物體或價值的隨機數。每個數值被稱為數據資料。對應于行數,該數據集的數據可能包括一個或多個成員。

This paper proposes an efficient contractor for the TDoA (Time Differential of Arrival) equation. The contractor is based on a minimal inclusion test which is built using the Karush-Kuhn-Tucker (KKT) conditions. An application related to the localization of sound sources using a TDoA technique is proposed.

The rise of Generative Artificial Intelligence systems (``AI systems'') has created unprecedented social engagement. AI code generation systems provide responses (output) to questions or requests by accessing the vast library of open-source code created by developers over decades. However, they do so by allegedly stealing the open-source code stored in virtual libraries, known as repositories. How all this happens and whether there is a solution short of years of litigation that can protect innovation is the focus of this article. We also peripherally touch upon the array of issues raised by the relationship between AI and copyright. Looking ahead, we propose the following: (a) immediate changes to the licenses for open-source code created by developers that will allow access and/or use of any open-source code to humans only; (b) we suggest revisions to the Massachusetts Institute of Technology (``MIT'') license so that AI systems procure appropriate licenses from open-source code developers, which we believe will harmonize standards and build social consensus for the benefit of all of humanity rather than profit-driven centers of innovation; (c) We call for urgent legislative action to protect the future of AI systems while also promoting innovation; and (d) we propose that there is a shift in the burden of proof to AI systems in obfuscation cases.

Recently, numerous efforts have continued to push up performance boundaries of document-level relation extraction (DocRE) and have claimed significant progress in DocRE. In this paper, we do not aim at proposing a novel model for DocRE. Instead, we take a closer look at the field to see if these performance gains are actually true. By taking a comprehensive literature review and a thorough examination of popular DocRE datasets, we find that these performance gains are achieved upon a strong or even untenable assumption in common: all named entities are perfectly localized, normalized, and typed in advance. Next, we construct four types of entity mention attacks to examine the robustness of typical DocRE models by behavioral probing. We also have a close check on model usability in a more realistic setting. Our findings reveal that most of current DocRE models are vulnerable to entity mention attacks and difficult to be deployed in real-world end-user NLP applications. Our study calls more attentions for future research to stop simplifying problem setups, and to model DocRE in the wild rather than in an unrealistic Utopian world.

Communication scheduling has been shown to be effective in accelerating distributed training, which enables all-reduce communications to be overlapped with backpropagation computations. This has been commonly adopted in popular distributed deep learning frameworks. However, there exist two fundamental problems: (1) excessive startup latency proportional to the number of workers for each all-reduce operation; (2) it only achieves sub-optimal training performance due to the dependency and synchronization requirement of the feed-forward computation in the next iteration. We propose a novel scheduling algorithm, DeAR, that decouples the all-reduce primitive into two continuous operations, which overlaps with both backpropagation and feed-forward computations without extra communications. We further design a practical tensor fusion algorithm to improve the training performance. Experimental results with five popular models show that DeAR achieves up to 83% and 15% training speedup over the state-of-the-art solutions on a 64-GPU cluster with 10Gb/s Ethernet and 100Gb/s InfiniBand interconnects, respectively.

Federated Learning (FL) has been recently receiving increasing consideration from the cybersecurity community as a way to collaboratively train deep learning models with distributed profiles of cyber threats, with no disclosure of training data. Nevertheless, the adoption of FL in cybersecurity is still in its infancy, and a range of practical aspects have not been properly addressed yet. Indeed, the Federated Averaging algorithm at the core of the FL concept requires the availability of test data to control the FL process. Although this might be feasible in some domains, test network traffic of newly discovered attacks cannot be always shared without disclosing sensitive information. In this paper, we address the convergence of the FL process in dynamic cybersecurity scenarios, where the trained model must be frequently updated with new recent attack profiles to empower all members of the federation with the latest detection features. To this aim, we propose FLAD (adaptive Federated Learning Approach to DDoS attack detection), an FL solution for cybersecurity applications based on an adaptive mechanism that orchestrates the FL process by dynamically assigning more computation to those members whose attacks profiles are harder to learn, without the need of sharing any test data to monitor the performance of the trained model. Using a recent dataset of DDoS attacks, we demonstrate that FLAD outperforms state-of-the-art FL algorithms in terms of convergence time and accuracy across a range of unbalanced datasets of heterogeneous DDoS attacks. We also show the robustness of our approach in a realistic scenario, where we retrain the deep learning model multiple times to introduce the profiles of new attacks on a pre-trained model.

Short Message Service (SMS) remains one of the most popular communication channels since its introduction in 2G cellular networks. In this paper, we demonstrate that merely receiving silent SMS messages regularly opens a stealthy side-channel that allows other regular network users to infer the whereabouts of the SMS recipient. The core idea is that receiving an SMS inevitably generates Delivery Reports whose reception bestows a timing attack vector at the sender. We conducted experiments across various countries, operators, and devices to show that an attacker can deduce the location of an SMS recipient by analyzing timing measurements from typical receiver locations. Our results show that, after training an ML model, the SMS sender can accurately determine multiple locations of the recipient. For example, our model achieves up to 96% accuracy for locations across different countries, and 86% for two locations within Belgium. Due to the way cellular networks are designed, it is difficult to prevent Delivery Reports from being returned to the originator making it challenging to thwart this covert attack without making fundamental changes to the network architecture.

Although the variational autoencoder (VAE) and its conditional extension (CVAE) are capable of state-of-the-art results across multiple domains, their precise behavior is still not fully understood, particularly in the context of data (like images) that lie on or near a low-dimensional manifold. For example, while prior work has suggested that the globally optimal VAE solution can learn the correct manifold dimension, a necessary (but not sufficient) condition for producing samples from the true data distribution, this has never been rigorously proven. Moreover, it remains unclear how such considerations would change when various types of conditioning variables are introduced, or when the data support is extended to a union of manifolds (e.g., as is likely the case for MNIST digits and related). In this work, we address these points by first proving that VAE global minima are indeed capable of recovering the correct manifold dimension. We then extend this result to more general CVAEs, demonstrating practical scenarios whereby the conditioning variables allow the model to adaptively learn manifolds of varying dimension across samples. Our analyses, which have practical implications for various CVAE design choices, are also supported by numerical results on both synthetic and real-world datasets.

The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.

Classic machine learning methods are built on the $i.i.d.$ assumption that training and testing data are independent and identically distributed. However, in real scenarios, the $i.i.d.$ assumption can hardly be satisfied, rendering the sharp drop of classic machine learning algorithms' performances under distributional shifts, which indicates the significance of investigating the Out-of-Distribution generalization problem. Out-of-Distribution (OOD) generalization problem addresses the challenging setting where the testing distribution is unknown and different from the training. This paper serves as the first effort to systematically and comprehensively discuss the OOD generalization problem, from the definition, methodology, evaluation to the implications and future directions. Firstly, we provide the formal definition of the OOD generalization problem. Secondly, existing methods are categorized into three parts based on their positions in the whole learning pipeline, namely unsupervised representation learning, supervised model learning and optimization, and typical methods for each category are discussed in detail. We then demonstrate the theoretical connections of different categories, and introduce the commonly used datasets and evaluation metrics. Finally, we summarize the whole literature and raise some future directions for OOD generalization problem. The summary of OOD generalization methods reviewed in this survey can be found at //out-of-distribution-generalization.com.

Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.

北京阿比特科技有限公司