This paper investigates a novel offline change-point detection problem from an information-theoretic perspective. In contrast to most related works, we assume that the knowledge of the underlying pre- and post-change distributions are not known and can only be learned from the training sequences which are available. We further require the probability of the \emph{estimation error} to decay either exponentially or sub-exponentially fast (corresponding respectively to the large and moderate deviations regimes in information theory parlance). Based on the training sequences as well as the test sequence consisting of a single change-point, we design a change-point estimator and further show that this estimator is optimal by establishing matching (strong) converses. This leads to a full characterization of the optimal confidence width (i.e., half the width of the confidence interval within which the true change-point is located at with high probability) as a function of the undetected error, under both the large and moderate deviations regimes.
In this paper, we present a wideband subspace estimation method that characterizes the signal subspace through its orthogonal projection matrix at each frequency. Fundamentally, the method models this projection matrix as a function of frequency that can be approximated by a polynomial. It provides two improvements: a reduction in the number of parameters required to represent the signal subspace along a given frequency band and a quality improvement in wideband direction-of-arrival (DOA) estimators such as Incoherent Multiple Signal Classification (IC-MUSIC) and Modified Test of Orthogonality of Projected Subspaces (MTOPS). In rough terms, the method fits a polynomial to a set of projection matrix estimates, obtained at a set of frequencies, and then uses the polynomial as a representation of the signal subspace. The paper includes the derivation of asymptotic bounds for the bias and root-mean-square (RMS) error of the projection matrix estimate and a numerical assessment of the method and its combination with the previous two DOA estimators.
A common approach to tackle a combinatorial optimization problem is to first solve a continuous relaxation and then round the obtained fractional solution. For the latter, the framework of contention resolution schemes (or CR schemes), introduced by Chekuri, Vondrak, and Zenklusen, is a general and successful tool. A CR scheme takes a fractional point $x$ in a relaxation polytope, rounds each coordinate $x_i$ independently to get a possibly non-feasible set, and then drops some elements in order to satisfy the independence constraints. Intuitively, a CR scheme is $c$-balanced if every element $i$ is selected with probability at least $c \cdot x_i$. It is known that general matroids admit a $(1-1/e)$-balanced CR scheme, and that this is (asymptotically) optimal. This is in particular true for the special case of uniform matroids of rank one. In this work, we provide a simple and explicit monotone CR scheme with a balancedness of $1 - \binom{n}{k}\:\left(1-\frac{k}{n}\right)^{n+1-k}\:\left(\frac{k}{n}\right)^k$, and show that this is optimal. As $n$ grows, this expression converges from above to $1 - e^{-k}k^k/k!$. While this asymptotic bound can be obtained by combining previously known results, these require defining an exponential-sized linear program, as well as using random sampling and the ellipsoid algorithm. Our procedure, on the other hand, has the advantage of being simple and explicit. Moreover, this scheme generalizes into an optimal CR scheme for partition matroids.
We present an overview on Temporal Logic Programming under the perspective of its application for Knowledge Representation and declarative problem solving. Such programs are the result of combining usual rules with temporal modal operators, as in Linear-time Temporal Logic (LTL). We focus on recent results of the non-monotonic formalism called Temporal Equilibrium Logic (TEL) that is defined for the full syntax of LTL, but performs a model selection criterion based on Equilibrium Logic, a well known logical characterization of Answer Set Programming (ASP). We obtain a proper extension of the stable models semantics for the general case of arbitrary temporal formulas. We recall the basic definitions for TEL and its monotonic basis, the temporal logic of Here-and-There (THT), and study the differences between infinite and finite traces. We also provide other useful results, such as the translation into other formalisms like Quantified Equilibrium Logic or Second-order LTL, and some techniques for computing temporal stable models based on automata. In a second part, we focus on practical aspects, defining a syntactic fragment called temporal logic programs closer to ASP, and explain how this has been exploited in the construction of the solver TELINGO.
Estimating the mask-wearing ratio in public places is important as it enables health authorities to promptly analyze and implement policies. Methods for estimating the mask-wearing ratio on the basis of image analysis have been reported. However, there is still a lack of comprehensive research on both methodologies and datasets. Most recent reports straightforwardly propose estimating the ratio by applying conventional object detection and classification methods. It is feasible to use regression-based approaches to estimate the number of people wearing masks, especially for congested scenes with tiny and occluded faces, but this has not been well studied. A large-scale and well-annotated dataset is still in demand. In this paper, we present two methods for ratio estimation that leverage either a detection-based or regression-based approach. For the detection-based approach, we improved the state-of-the-art face detector, RetinaFace, used to estimate the ratio. For the regression-based approach, we fine-tuned the baseline network, CSRNet, used to estimate the density maps for masked and unmasked faces. We also present the first large-scale dataset, the ``NFM dataset,'' which contains 581,108 face annotations extracted from 18,088 video frames in 17 street-view videos. Experiments demonstrated that the RetinaFace-based method has higher accuracy under various situations and that the CSRNet-based method has a shorter operation time thanks to its compactness.
This paper studies optimal motion planning subject to motion and environment uncertainties. By modeling the system as a probabilistic labeled Markov decision process (PL-MDP), the control objective is to synthesize a finite-memory policy, under which the agent satisfies high-level complex tasks expressed as linear temporal logic (LTL) with desired satisfaction probability. In particular, the cost optimization of the trajectory that satisfies infinite-horizon tasks is considered, and the trade-off between reducing the expected mean cost and maximizing the probability of task satisfaction is analyzed. Instead of using traditional Rabin automata, the LTL formulas are converted to limit-deterministic B\"uchi automata (LDBA) with a more straightforward accepting condition and a more compact graph structure. The novelty of this work lies in the consideration of the cases that LTL specifications can be potentially infeasible and the development of a relaxed product MDP between PL-MDP and LDBA. The relaxed product MDP allows the agent to revise its motion plan whenever the task is not fully feasible and to quantify the violation measurement of the revised plan. A multi-objective optimization problem is then formulated to jointly consider the probability of the task satisfaction, the violation with respect to original task constraints, and the implementation cost of the policy execution, which is solved via coupled linear programs. To the best of our knowledge, it is the first work that bridges the gap between planning revision and optimal control synthesis of both plan prefix and plan suffix of the agent trajectory over the infinite horizon. Experimental results are provided to demonstrate the effectiveness of the proposed framework.
In recent years, researchers have made significant progress in devising reinforcement-learning algorithms for optimizing linear temporal logic (LTL) objectives and LTL-like objectives. Despite these advancements, there are fundamental limitations to how well this problem can be solved that previous studies have alluded to but, to our knowledge, have not examined in depth. In this paper, we address theoretically the hardness of learning with general LTL objectives. We formalize the problem under the probably approximately correct learning in Markov decision processes (PAC-MDP) framework, a standard framework for measuring sample complexity in reinforcement learning. In this formalization, we prove that the optimal policy for any LTL formula is PAC-MDP-learnable only if the formula is in the most limited class in the LTL hierarchy, consisting of only finite-horizon-decidable properties. Practically, our result implies that it is impossible for a reinforcement-learning algorithm to obtain a PAC-MDP guarantee on the performance of its learned policy after finitely many interactions with an unconstrained environment for non-finite-horizon-decidable LTL objectives.
This paper studies the device activity detection problem in a multi-cell massive multiple-input multiple-output (MIMO) system, in which the active devices transmit signature sequences to multiple base stations (BSs) that are connected to a central unit (CU), and the BSs cooperate across multiple cells to detect the active devices based on the sample covariance matrices at the BSs. This paper demonstrates the importance of exploiting the knowledge of channel large-scale fadings in this cooperative detection setting through a phase transition analysis, which characterizes the length of signature sequences needed for successful device activity detection in the massive MIMO regime. It is shown that when the large-scale fadings are known, the phase transition for the multi-cell scenario is approximately the same as that of a single-cell system. In this case, the length of the signature sequences required for reliable activity detection in the multi-cell system can be made to be independent of the number of cells through cooperation, in contrast to the case where the large-scale fadings are not known. Further, this paper considers the case in which the fronthaul links between the BSs and the CU have capacity constraints and proposes a novel cooperation scheme based on the quantization of preliminary detection results at the BSs and the reconstruction of the sample covariance matrices at the CU. Simulations show that the proposed method significantly outperforms the scheme of directly quantizing the sample covariance matrices.
We propose a topology optimisation of acoustic devices that work in a certain bandwidth. To achieve this, we define the objective function as the frequency-averaged sound intensity at given observation points, which is represented by a frequency integral over a given frequency band. It is, however, prohibitively expensive to evaluate such an integral naively by a quadrature. We thus estimate the frequency response by the Pad\'{e} approximation and integrate the approximated function to obtain the objective function. The corresponding topological derivative is derived with the help of the adjoint variable method and chain rule. It is shown that the objective and its sensitivity can be evaluated semi-analytically. We present efficient numerical procedures to compute them and incorporate them into a topology optimisation based on the level-set method. We confirm the validity and effectiveness of the present method through some numerical examples.
Time series processing and feature extraction are crucial and time-intensive steps in conventional machine learning pipelines. Existing packages are limited in their real-world applicability, as they cannot cope with irregularly-sampled and asynchronous data. We therefore present $\texttt{tsflex}$, a domain-independent, flexible, and sequence first Python toolkit for processing & feature extraction, that is capable of handling irregularly-sampled sequences with unaligned measurements. This toolkit is sequence first as (1) sequence based arguments are leveraged for strided-window feature extraction, and (2) the sequence-index is maintained through all supported operations. $\texttt{tsflex}$ is flexible as it natively supports (1) multivariate time series, (2) multiple window-stride configurations, and (3) integrates with processing and feature functions from other packages, while (4) making no assumptions about the data sampling rate regularity and synchronization. Other functionalities from this package are multiprocessing, in-depth execution time logging, support for categorical & time based data, chunking sequences, and embedded serialization. $\texttt{tsflex}$ is developed to enable fast and memory-efficient time series processing & feature extraction. Results indicate that $\texttt{tsflex}$ is more flexible than similar packages while outperforming these toolkits in both runtime and memory usage.
Modern CNN-based object detectors rely on bounding box regression and non-maximum suppression to localize objects. While the probabilities for class labels naturally reflect classification confidence, localization confidence is absent. This makes properly localized bounding boxes degenerate during iterative regression or even suppressed during NMS. In the paper we propose IoU-Net learning to predict the IoU between each detected bounding box and the matched ground-truth. The network acquires this confidence of localization, which improves the NMS procedure by preserving accurately localized bounding boxes. Furthermore, an optimization-based bounding box refinement method is proposed, where the predicted IoU is formulated as the objective. Extensive experiments on the MS-COCO dataset show the effectiveness of IoU-Net, as well as its compatibility with and adaptivity to several state-of-the-art object detectors.