亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce the structured scene-text spotting task, which requires a scene-text OCR system to spot text in the wild according to a query regular expression. Contrary to generic scene text OCR, structured scene-text spotting seeks to dynamically condition both scene text detection and recognition on user-provided regular expressions. To tackle this task, we propose the Structured TExt sPotter (STEP), a model that exploits the provided text structure to guide the OCR process. STEP is able to deal with regular expressions that contain spaces and it is not bound to detection at the word-level granularity. Our approach enables accurate zero-shot structured text spotting in a wide variety of real-world reading scenarios and is solely trained on publicly available data. To demonstrate the effectiveness of our approach, we introduce a new challenging test dataset that contains several types of out-of-vocabulary structured text, reflecting important reading applications of fields such as prices, dates, serial numbers, license plates etc. We demonstrate that STEP can provide specialised OCR performance on demand in all tested scenarios.

相關內容

Despite advances in generative methods, accurately modeling the distribution of graphs remains a challenging task primarily because of the absence of predefined or inherent unique graph representation. Two main strategies have emerged to tackle this issue: 1) restricting the number of possible representations by sorting the nodes, or 2) using permutation-invariant/equivariant functions, specifically Graph Neural Networks (GNNs). In this paper, we introduce a new framework named Discrete Graph Auto-Encoder (DGAE), which leverages the strengths of both strategies and mitigate their respective limitations. In essence, we propose a strategy in 2 steps. We first use a permutation-equivariant auto-encoder to convert graphs into sets of discrete latent node representations, each node being represented by a sequence of quantized vectors. In the second step, we sort the sets of discrete latent representations and learn their distribution with a specifically designed auto-regressive model based on the Transformer architecture. Through multiple experimental evaluations, we demonstrate the competitive performances of our model in comparison to the existing state-of-the-art across various datasets. Various ablation studies support the interest of our method.

Multi-image super-resolution (MISR) allows to increase the spatial resolution of a low-resolution (LR) acquisition by combining multiple images carrying complementary information in the form of sub-pixel offsets in the scene sampling, and can be significantly more effective than its single-image counterpart. Its main difficulty lies in accurately registering and fusing the multi-image information. Currently studied settings, such as burst photography, typically involve assumptions of small geometric disparity between the LR images and rely on optical flow for image registration. We study a MISR method that can increase the resolution of sets of images acquired with arbitrary, and potentially wildly different, camera positions and orientations, generalizing the currently studied MISR settings. Our proposed model, called EpiMISR, moves away from optical flow and explicitly uses the epipolar geometry of the acquisition process, together with transformer-based processing of radiance feature fields to substantially improve over state-of-the-art MISR methods in presence of large disparities in the LR images.

We tackle the problem of Byzantine errors in distributed gradient descent within the Byzantine-resilient gradient coding framework. Our proposed solution can recover the exact full gradient in the presence of $s$ malicious workers with a data replication factor of only $s+1$. It generalizes previous solutions to any data assignment scheme that has a regular replication over all data samples. The scheme detects malicious workers through additional interactive communication and a small number of local computations at the main node, leveraging group-wise comparisons between workers with a provably optimal grouping strategy. The scheme requires at most $s$ interactive rounds that incur a total communication cost logarithmic in the number of data samples.

For turbulent problems of industrial scale, computational cost may become prohibitive due to the stability constraints associated with explicit time discretization of the underlying conservation laws. On the other hand, implicit methods allow for larger time-step sizes but require exorbitant computational resources. Implicit-explicit (IMEX) formulations combine both temporal approaches, using an explicit method in nonstiff portions of the domain and implicit in stiff portions. While these methods can be shown to be orders of magnitude faster than typical explicit discretizations, they are still limited by their implicit discretization in terms of cost. Hybridization reduces the scaling of these systems to an effective lower dimension, which allows the system to be solved at significant speedup factors compared to standard implicit methods. This work proposes an IMEX scheme that combines hybridized and standard flux reconstriction (FR) methods to tackle geometry-induced stiffness. By using the so-called transmission conditions, an overall conservative formulation can be obtained after combining both explicit FR and hybridized implicit FR methods. We verify and apply our approach to a series of numerical examples, including a multi-element airfoil at Reynolds number 1.7 million. Results demonstrate speedup factors of four against standard IMEX formulations and at least 15 against standard explicit formulations for the same problem.

Heterogeneous Bayesian decentralized data fusion captures the set of problems in which two robots must combine two probability density functions over non-equal, but overlapping sets of random variables. In the context of multi-robot dynamic systems, this enables robots to take a "divide and conquer" approach to reason and share data over complementary tasks instead of over the full joint state space. For example, in a target tracking application, this allows robots to track different subsets of targets and share data on only common targets. This paper presents a framework by which robots can each use a local factor graph to represent relevant partitions of a complex global joint probability distribution, thus allowing them to avoid reasoning over the entirety of a more complex model and saving communication as well as computation costs. From a theoretical point of view, this paper makes contributions by casting the heterogeneous decentralized fusion problem in terms of a factor graph, analyzing the challenges that arise due to dynamic filtering, and then developing a new conservative filtering algorithm that ensures statistical correctness. From a practical point of view, we show how this framework can be used to represent different multi-robot applications and then test it with simulations and hardware experiments to validate and demonstrate its statistical conservativeness, applicability, and robustness to real-world challenges.

The linear classifier is widely used in various image classification tasks. It works by optimizing the distance between a sample and its corresponding class center. However, in real-world data, one class can contain several local clusters, e.g., birds of different poses. To address this complexity, we propose a novel multi-center classifier. Different from the vanilla linear classifier, our proposal is established on the assumption that the deep features of the training set follow a Gaussian Mixture distribution. Specifically, we create a conditional Gaussian distribution for each class and then sample multiple sub-centers from that distribution to extend the linear classifier. This approach allows the model to capture intra-class local structures more efficiently. In addition, at test time we set the mean of the conditional Gaussian distribution as the class center of the linear classifier and follow the vanilla linear classifier outputs, thus requiring no additional parameters or computational overhead. Extensive experiments on image classification show that the proposed multi-center classifier is a powerful alternative to widely used linear classifiers. Code available at //github.com/ZheminZhang1/MultiCenter-Classifier.

Module Learning with Errors (M-LWE) based key reconciliation mechanisms (KRM) can be viewed as quantizing an M-LWE sample according to a lattice codebook. This paper describes a generic M-LWE-based KRM framework, valid for any dimensional lattices and any modulus $q$ without a dither. Our main result is an explicit upper bound on the decryption failure rate (DFR) of M-LWE-based KRM. This bound allows us to construct optimal lattice quantizers to reduce the DFR and communication cost simultaneously. Moreover, we present a KRM scheme using the same security parameters $(q,k,\eta_1,\eta_2)$ as in Kyber. Compared with Kyber, the communication cost is reduced by up to $36.47\%$ and the DFR is reduced by a factor of up to $2^{99}$. The security arguments remain the same as Kyber.

Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complicated and user relations can be high-order. Hypergraph provides a natural way to model complex high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. The experimental results on multiple real-world datasets show that the proposed model outperforms the SOTA methods, and the ablation study verifies the effectiveness of the multi-channel setting and the self-supervised task. The implementation of our model is available via //github.com/Coder-Yu/RecQ.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

北京阿比特科技有限公司