Amidst decline in public trust in technology, computing ethics have taken center stage, and critics have raised questions about corporate ethics washing. Yet few studies examine the actual implementation of AI ethics values in technology companies. Based on a qualitative analysis of technology workers tasked with integrating AI ethics into product development, we find that workers experience an environment where policies, practices, and outcomes are decoupled. We analyze AI ethics workers as ethics entrepreneurs who work to institutionalize new ethics-related practices within organizations. We show that ethics entrepreneurs face three major barriers to their work. First, they struggle to have ethics prioritized in an environment centered around software product launches. Second, ethics are difficult to quantify in a context where company goals are incentivized by metrics. Third, the frequent reorganization of teams makes it difficult to access knowledge and maintain relationships central to their work. Consequently, individuals take on great personal risk when raising ethics issues, especially when they come from marginalized backgrounds. These findings shed light on complex dynamics of institutional change at technology companies.
Origin-destination~(OD) flow modeling is an extensively researched subject across multiple disciplines, such as the investigation of travel demand in transportation and spatial interaction modeling in geography. However, researchers from different fields tend to employ their own unique research paradigms and lack interdisciplinary communication, preventing the cross-fertilization of knowledge and the development of novel solutions to challenges. This article presents a systematic interdisciplinary survey that comprehensively and holistically scrutinizes OD flows from utilizing fundamental theory to studying the mechanism of population mobility and solving practical problems with engineering techniques, such as computational models. Specifically, regional economics, urban geography, and sociophysics are adept at employing theoretical research methods to explore the underlying mechanisms of OD flows. They have developed three influential theoretical models: the gravity model, the intervening opportunities model, and the radiation model. These models specifically focus on examining the fundamental influences of distance, opportunities, and population on OD flows, respectively. In the meantime, fields such as transportation, urban planning, and computer science primarily focus on addressing four practical problems: OD prediction, OD construction, OD estimation, and OD forecasting. Advanced computational models, such as deep learning models, have gradually been introduced to address these problems more effectively. Finally, based on the existing research, this survey summarizes current challenges and outlines future directions for this topic. Through this survey, we aim to break down the barriers between disciplines in OD flow-related research, fostering interdisciplinary perspectives and modes of thinking.
Artificial neural networks that can recover latent dynamics from recorded neural activity may provide a powerful avenue for identifying and interpreting the dynamical motifs underlying biological computation. Given that neural variance alone does not uniquely determine a latent dynamical system, interpretable architectures should prioritize accurate and low-dimensional latent dynamics. In this work, we evaluated the performance of sequential autoencoders (SAEs) in recovering latent chaotic attractors from simulated neural datasets. We found that SAEs with widely-used recurrent neural network (RNN)-based dynamics were unable to infer accurate firing rates at the true latent state dimensionality, and that larger RNNs relied upon dynamical features not present in the data. On the other hand, SAEs with neural ordinary differential equation (NODE)-based dynamics inferred accurate rates at the true latent state dimensionality, while also recovering latent trajectories and fixed point structure. Ablations reveal that this is mainly because NODEs (1) allow use of higher-capacity multi-layer perceptrons (MLPs) to model the vector field and (2) predict the derivative rather than the next state. Decoupling the capacity of the dynamics model from its latent dimensionality enables NODEs to learn the requisite low-D dynamics where RNN cells fail. Additionally, the fact that the NODE predicts derivatives imposes a useful autoregressive prior on the latent states. The suboptimal interpretability of widely-used RNN-based dynamics may motivate substitution for alternative architectures, such as NODE, that enable learning of accurate dynamics in low-dimensional latent spaces.
Privacy engineering, as an emerging field of research and practice, comprises the technical capabilities and management processes needed to implement, deploy, and operate privacy features and controls in working systems. For that, software practitioners and other stakeholders in software companies need to work cooperatively toward building privacy-preserving businesses and engineering solutions. Significant research has been done to understand the software practitioners' perceptions of information privacy, but more emphasis should be given to the uptake of concrete privacy engineering components. This research delves into the software practitioners' perspectives and mindset, organisational aspects, and current practices on privacy and its engineering processes. A total of 30 practitioners from nine countries and backgrounds were interviewed, sharing their experiences and voicing their opinions on a broad range of privacy topics. The thematic analysis methodology was adopted to code the interview data qualitatively and construct a rich and nuanced thematic framework. As a result, we identified three critical interconnected themes that compose our thematic framework for privacy engineering "in the wild": (1) personal privacy mindset and stance, categorised into practitioners' privacy knowledge, attitudes and behaviours; (2) organisational privacy aspects, such as decision-power and positive and negative examples of privacy climate; and, (3) privacy engineering practices, such as procedures and controls concretely used in the industry. Among the main findings, this study provides many insights about the state-of-the-practice of privacy engineering, pointing to a positive influence of privacy laws (e.g., EU General Data Protection Regulation) on practitioners' behaviours and organisations' cultures. Aspects such as organisational privacy culture and climate were also confirmed to have [...].
The use of smart devices (e.g., smartphones, smartwatches) and other wearables to deliver digital interventions to improve health outcomes has grown significantly in the past few years. Mobile health (mHealth) systems are excellent tools for the delivery of adaptive interventions that aim to provide the right type and amount of support, at the right time, by adapting to an individual's changing context. Micro-randomized trials (MRTs) are an increasingly common experimental design that is the main source for data-driven evidence of mHealth intervention effectiveness. To assess time-varying causal effect moderation in an MRT, individuals are intensively randomized to receive treatment over time. In addition, measurements, including individual characteristics, and context are also collected throughout the study. The effective utilization of covariate information to improve inferences regarding causal effects has been well-established in the context of randomized control trials (RCTs), where covariate adjustment is applied to leverage baseline data to address chance imbalances and improve the asymptotic efficiency of causal effect estimation. However, the application of this approach to longitudinal data, such as MRTs, has not been thoroughly explored. Recognizing the connection to Neyman Orthogonality, we propose a straightforward and intuitive method to improve the efficiency of moderated causal excursion effects by incorporating auxiliary variables. We compare the robust standard errors of our method with those of the benchmark method. The efficiency gain of our approach is demonstrated through simulation studies and an analysis of data from the Intern Health Study (NeCamp et al., 2020).
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.
Artificial Intelligence (AI) and its applications have sparked extraordinary interest in recent years. This achievement can be ascribed in part to advances in AI subfields including Machine Learning (ML), Computer Vision (CV), and Natural Language Processing (NLP). Deep learning, a sub-field of machine learning that employs artificial neural network concepts, has enabled the most rapid growth in these domains. The integration of vision and language has sparked a lot of attention as a result of this. The tasks have been created in such a way that they properly exemplify the concepts of deep learning. In this review paper, we provide a thorough and an extensive review of the state of the arts approaches, key models design principles and discuss existing datasets, methods, their problem formulation and evaluation measures for VQA and Visual reasoning tasks to understand vision and language representation learning. We also present some potential future paths in this field of research, with the hope that our study may generate new ideas and novel approaches to handle existing difficulties and develop new applications.
Computing is a critical driving force in the development of human civilization. In recent years, we have witnessed the emergence of intelligent computing, a new computing paradigm that is reshaping traditional computing and promoting digital revolution in the era of big data, artificial intelligence and internet-of-things with new computing theories, architectures, methods, systems, and applications. Intelligent computing has greatly broadened the scope of computing, extending it from traditional computing on data to increasingly diverse computing paradigms such as perceptual intelligence, cognitive intelligence, autonomous intelligence, and human-computer fusion intelligence. Intelligence and computing have undergone paths of different evolution and development for a long time but have become increasingly intertwined in recent years: intelligent computing is not only intelligence-oriented but also intelligence-driven. Such cross-fertilization has prompted the emergence and rapid advancement of intelligent computing. Intelligent computing is still in its infancy and an abundance of innovations in the theories, systems, and applications of intelligent computing are expected to occur soon. We present the first comprehensive survey of literature on intelligent computing, covering its theory fundamentals, the technological fusion of intelligence and computing, important applications, challenges, and future perspectives. We believe that this survey is highly timely and will provide a comprehensive reference and cast valuable insights into intelligent computing for academic and industrial researchers and practitioners.
Multimodal machine learning is a vibrant multi-disciplinary research field that aims to design computer agents with intelligent capabilities such as understanding, reasoning, and learning through integrating multiple communicative modalities, including linguistic, acoustic, visual, tactile, and physiological messages. With the recent interest in video understanding, embodied autonomous agents, text-to-image generation, and multisensor fusion in application domains such as healthcare and robotics, multimodal machine learning has brought unique computational and theoretical challenges to the machine learning community given the heterogeneity of data sources and the interconnections often found between modalities. However, the breadth of progress in multimodal research has made it difficult to identify the common themes and open questions in the field. By synthesizing a broad range of application domains and theoretical frameworks from both historical and recent perspectives, this paper is designed to provide an overview of the computational and theoretical foundations of multimodal machine learning. We start by defining two key principles of modality heterogeneity and interconnections that have driven subsequent innovations, and propose a taxonomy of 6 core technical challenges: representation, alignment, reasoning, generation, transference, and quantification covering historical and recent trends. Recent technical achievements will be presented through the lens of this taxonomy, allowing researchers to understand the similarities and differences across new approaches. We end by motivating several open problems for future research as identified by our taxonomy.
Due to the significance and value in human-computer interaction and natural language processing, task-oriented dialog systems are attracting more and more attention in both academic and industrial communities. In this paper, we survey recent advances and challenges in an issue-specific manner. We discuss three critical topics for task-oriented dialog systems: (1) improving data efficiency to facilitate dialog system modeling in low-resource settings, (2) modeling multi-turn dynamics for dialog policy learning to achieve better task-completion performance, and (3) integrating domain ontology knowledge into the dialog model in both pipeline and end-to-end models. We also review the recent progresses in dialog evaluation and some widely-used corpora. We believe that this survey can shed a light on future research in task-oriented dialog systems.
There is a resurgent interest in developing intelligent open-domain dialog systems due to the availability of large amounts of conversational data and the recent progress on neural approaches to conversational AI. Unlike traditional task-oriented bots, an open-domain dialog system aims to establish long-term connections with users by satisfying the human need for communication, affection, and social belonging. This paper reviews the recent works on neural approaches that are devoted to addressing three challenges in developing such systems: semantics, consistency, and interactiveness. Semantics requires a dialog system to not only understand the content of the dialog but also identify user's social needs during the conversation. Consistency requires the system to demonstrate a consistent personality to win users trust and gain their long-term confidence. Interactiveness refers to the system's ability to generate interpersonal responses to achieve particular social goals such as entertainment, conforming, and task completion. The works we select to present here is based on our unique views and are by no means complete. Nevertheless, we hope that the discussion will inspire new research in developing more intelligent dialog systems.