亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose two new classes of binary array codes, termed V-ETBR and V-ESIP codes, by reformulating and generalizing the variant technique of deriving the well-known generalized row-diagonal parity~(RDP) codes from shortened independent parity~(IP) codes. The V-ETBR and V-ESIP codes are both based on binary parity-check matrices and are essentially variants of two classes of codes over a special polynomial ring (termed ETBR and ESIP codes in this paper). To explore the conditions that make the variant codes binary Maximum Distance Separable~(MDS) array codes that achieve optimal storage efficiency, this paper derives the connections between V-ETBR/V-ESIP codes and ETBR/ESIP codes. These connections are beneficial for constructing various forms of the variant codes. By utilizing these connections, this paper also explicitly presents the constructions of V-ETBR and V-ESIP MDS array codes with any number of parity columns $r$, along with their fast syndrome computations. In terms of construction, all proposed MDS array codes have an exponentially growing total number of data columns with respect to the column size, while alternative codes have that only with linear order. In terms of computation, the proposed syndrome computations make the corresponding encoding/decoding asymptotically require $\lfloor \lg r \rfloor+1$ XOR~(exclusive OR) operations per data bit, when the total number of data columns approaches infinity. This is also the lowest known asymptotic complexity in MDS codes.

相關內容

In this paper, we study arbitrary infinite binary information systems each of which consists of an infinite set called universe and an infinite set of two-valued functions (attributes) defined on the universe. We consider the notion of a problem over information system, which is described by a finite number of attributes and a mapping associating a decision to each tuple of attribute values. As algorithms for problem solving, we investigate deterministic and nondeterministic decision trees that use only attributes from the problem description. Nondeterministic decision trees are representations of decision rule systems that sometimes have less space complexity than the original rule systems. As time and space complexity, we study the depth and the number of nodes in the decision trees. In the worst case, with the growth of the number of attributes in the problem description, (i) the minimum depth of deterministic decision trees grows either as a logarithm or linearly, (ii) the minimum depth of nondeterministic decision trees either is bounded from above by a constant or grows linearly, (iii) the minimum number of nodes in deterministic decision trees has either polynomial or exponential growth, and (iv) the minimum number of nodes in nondeterministic decision trees has either polynomial or exponential growth. Based on these results, we divide the set of all infinite binary information systems into three complexity classes. This allows us to identify nontrivial relationships between deterministic decision trees and decision rules systems represented by nondeterministic decision trees. For each class, we study issues related to time-space trade-off for deterministic and nondeterministic decision trees.

Debugging physical computing projects provides a rich context to understand cross-disciplinary problem solving that integrates multiple domains of computing and engineering. Yet understanding and assessing students' learning of debugging remains a challenge, particularly in understudied areas such as physical computing, since finding and fixing hardware and software bugs is a deeply contextual practice. In this paper we draw on the rich history of clinical interviews to develop and pilot "failure artifact scenarios" in order to study changes in students' approaches to debugging and troubleshooting electronic textiles (e-textiles). We applied this clinical interview protocol before and after an eight-week-long e-textiles unit. We analyzed pre/post clinical interviews from 18 students at four different schools. The analysis revealed that students improved in identifying bugs with greater specificity, and across domains, and in considering multiple causes for bugs. We discuss implications for developing tools to assess students' debugging abilities through contextualized debugging scenarios in physical computing.

Recently, diffusion models have been used successfully to fit distributions for cross-modal data translation and multimodal data generation. However, these methods rely on extensive scaling, overlooking the inefficiency and interference between modalities. We develop Partially Shared U-Net (PS-U-Net) architecture which is an efficient multimodal diffusion model that allows text and image inputs to pass through dedicated layers and skip-connections for preserving modality-specific fine-grained details. Inspired by image inpainting, we also propose a new efficient multimodal sampling method that introduces new scenarios for conditional generation while only requiring a simple joint distribution to be learned. Our empirical exploration of the MS-COCO dataset demonstrates that our method generates multimodal text and image data with higher quality compared to existing multimodal diffusion models while having a comparable size, faster training, faster multimodal sampling, and more flexible generation.

Bayesian P-splines and basis determination through Bayesian model selection are both commonly employed strategies for nonparametric regression using spline basis expansions within the Bayesian framework. Despite their widespread use, each method has particular limitations that may introduce potential estimation bias depending on the nature of the target function. To overcome the limitations associated with each method while capitalizing on their respective strengths, we propose a new prior distribution that integrates the essentials of both approaches. The proposed prior distribution assesses the complexity of the spline model based on a penalty term formed by a convex combination of the penalties from both methods. The proposed method exhibits adaptability to the unknown level of smoothness, while achieving the minimax-optimal posterior contraction rate up to a logarithmic factor. We provide an efficient Markov chain Monte Carlo algorithm for implementing the proposed approach. Our extensive simulation study reveals that the proposed method outperforms other competitors in terms of performance metrics or model complexity.

Mutation validation (MV) is a recently proposed approach for model selection, garnering significant interest due to its unique characteristics and potential benefits compared to the widely used cross-validation (CV) method. In this study, we empirically compared MV and $k$-fold CV using benchmark and real-world datasets. By employing Bayesian tests, we compared generalization estimates yielding three posterior probabilities: practical equivalence, CV superiority, and MV superiority. We also evaluated the differences in the capacity of the selected models and computational efficiency. We found that both MV and CV select models with practically equivalent generalization performance across various machine learning algorithms and the majority of benchmark datasets. MV exhibited advantages in terms of selecting simpler models and lower computational costs. However, in some cases MV selected overly simplistic models leading to underfitting and showed instability in hyperparameter selection. These limitations of MV became more evident in the evaluation of a real-world neuroscientific task of predicting sex at birth using brain functional connectivity.

Task-oriented conversational datasets often lack topic variability and linguistic diversity. However, with the advent of Large Language Models (LLMs) pretrained on extensive, multilingual and diverse text data, these limitations seem overcome. Nevertheless, their generalisability to different languages and domains in dialogue applications remains uncertain without benchmarking datasets. This paper presents a holistic annotation approach for emotion and conversational quality in the context of bilingual customer support conversations. By performing annotations that take into consideration the complete instances that compose a conversation, one can form a broader perspective of the dialogue as a whole. Furthermore, it provides a unique and valuable resource for the development of text classification models. To this end, we present benchmarks for Emotion Recognition and Dialogue Quality Estimation and show that further research is needed to leverage these models in a production setting.

To address the challenge of identifying and understanding hidden dangers in substations from unstructured text data, a novel dynamic analysis method is proposed. This approach begins by analyzing and extracting data from the unstructured text related to hidden dangers. It then leverages a flexible, distributed data search engine built on Elastic-Search to handle this information. Following this, the hidden Markov model is employed to train the data within the engine. The Viterbi algorithm is integrated to decipher the hidden state sequences, facilitating the segmentation and labeling of entities related to hidden dangers. The final step involves using the Neo4j graph database to dynamically create a knowledge map that visualizes hidden dangers in the substation. This method's effectiveness is demonstrated through an example analysis using data from a specific substation's hidden dangers.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司