As machine learning-enabled Text-to-Image (TTI) systems are becoming increasingly prevalent and seeing growing adoption as commercial services, characterizing the social biases they exhibit is a necessary first step to lowering their risk of discriminatory outcomes. This evaluation, however, is made more difficult by the synthetic nature of these systems' outputs; since artificial depictions of fictive humans have no inherent gender or ethnicity nor do they belong to socially-constructed groups, we need to look beyond common categorizations of diversity or representation. To address this need, we propose a new method for exploring and quantifying social biases in TTI systems by directly comparing collections of generated images designed to showcase a system's variation across social attributes -- gender and ethnicity -- and target attributes for bias evaluation -- professions and gender-coded adjectives. Our approach allows us to (i) identify specific bias trends through visualization tools, (ii) provide targeted scores to directly compare models in terms of diversity and representation, and (iii) jointly model interdependent social variables to support a multidimensional analysis. We use this approach to analyze over 96,000 images generated by 3 popular TTI systems (DALL-E 2, Stable Diffusion v 1.4 and v 2) and find that all three significantly over-represent the portion of their latent space associated with whiteness and masculinity across target attributes; among the systems studied, DALL-E 2 shows the least diversity, followed by Stable Diffusion v2 then v1.4.
Interactive machine learning (IML) allows users to build their custom machine learning models without expert knowledge. While most existing IML systems are designed with classification algorithms, they sometimes oversimplify the capabilities of machine learning algorithms and restrict the user's task definition. On the other hand, as recent large-scale language models have shown, natural language representation has the potential to enable more flexible and generic task descriptions. Models that take images as input and output text have the potential to represent a variety of tasks by providing appropriate text labels for training. However, the effect of introducing text labels to IML system design has never been investigated. In this work, we aim to investigate the difference between image-to-text translation and image classification for IML systems. Using our prototype systems, we conducted a comparative user study with non-expert users, where participants solved various tasks. Our results demonstrate the underlying difficulty for users in properly defining image recognition tasks while highlighting the potential and challenges of interactive image-to-text translation systems.
Technology for open-ended language generation, a key application of artificial intelligence, has advanced to a great extent in recent years. Large-scale language models, which are trained on large corpora of text, are being used in a wide range of applications everywhere, from virtual assistants to conversational bots. While these language models output fluent text, existing research shows that these models can and do capture human biases. Many of these biases, especially those that could potentially cause harm, are being well-investigated. On the other hand, studies that infer and change human personality traits inherited by these models have been scarce or non-existent. Our work seeks to address this gap by exploring the personality traits of several large-scale language models designed for open-ended text generation and the datasets used for training them. We build on the popular Big Five factors and develop robust methods that quantify the personality traits of these models and their underlying datasets. In particular, we trigger the models with a questionnaire designed for personality assessment and subsequently classify the text responses into quantifiable traits using a Zero-shot classifier. Our estimation scheme sheds light on an important anthropomorphic element found in such AI models and can help stakeholders decide how they should be applied as well as how society could perceive them. Additionally, we examined approaches to alter these personalities, adding to our understanding of how AI models can be adapted to specific contexts.
Large Language Models (LLMs) have made rapid progress in recent months and weeks, garnering significant public attention. This has sparked concerns about aligning these models with human values, their impact on labor markets, and the potential need for regulation in further research and development. However, the discourse often lacks a focus on the imperative to widely diffuse the societal benefits of LLMs. To qualify this societal benefit, we assert that LLMs exhibit emergent abilities to humanize technology more effectively than previous technologies, and for people across language, occupation, and accessibility divides. We argue that they do so by addressing three mechanizing bottlenecks in today's computing technologies: creating diverse and accessible content, learning complex digital tools, and personalizing machine learning algorithms. We adopt a case-based approach and illustrate each bottleneck with two examples where current technology imposes bottlenecks that LLMs demonstrate the ability to address. Given this opportunity to humanize technology widely, we advocate for more widespread understanding of LLMs, tools and methods to simplify use of LLMs, and cross-cutting institutional capacity.
Named Entity Recognition (NER) is a cornerstone NLP task while its robustness has been given little attention. This paper rethinks the principles of NER attacks derived from sentence classification, as they can easily violate the label consistency between the original and adversarial NER examples. This is due to the fine-grained nature of NER, as even minor word changes in the sentence can result in the emergence or mutation of any entities, resulting in invalid adversarial examples. To this end, we propose a novel one-word modification NER attack based on a key insight, NER models are always vulnerable to the boundary position of an entity to make their decision. We thus strategically insert a new boundary into the sentence and trigger the Entity Boundary Interference that the victim model makes the wrong prediction either on this boundary word or on other words in the sentence. We call this attack Virtual Boundary Attack (ViBA), which is shown to be remarkably effective when attacking both English and Chinese models with a 70%-90% attack success rate on state-of-the-art language models (e.g. RoBERTa, DeBERTa) and also significantly faster than previous methods.
Diffusion models, which have emerged to become popular text-to-image generation models, can produce high-quality and content-rich images guided by textual prompts. However, there are limitations to semantic understanding and commonsense reasoning in existing models when the input prompts are concise narrative, resulting in low-quality image generation. To improve the capacities for narrative prompts, we propose a simple-yet-effective parameter-efficient fine-tuning approach called the Semantic Understanding and Reasoning adapter (SUR-adapter) for pre-trained diffusion models. To reach this goal, we first collect and annotate a new dataset SURD which consists of more than 57,000 semantically corrected multi-modal samples. Each sample contains a simple narrative prompt, a complex keyword-based prompt, and a high-quality image. Then, we align the semantic representation of narrative prompts to the complex prompts and transfer knowledge of large language models (LLMs) to our SUR-adapter via knowledge distillation so that it can acquire the powerful semantic understanding and reasoning capabilities to build a high-quality textual semantic representation for text-to-image generation. We conduct experiments by integrating multiple LLMs and popular pre-trained diffusion models to show the effectiveness of our approach in enabling diffusion models to understand and reason concise natural language without image quality degradation. Our approach can make text-to-image diffusion models easier to use with better user experience, which demonstrates our approach has the potential for further advancing the development of user-friendly text-to-image generation models by bridging the semantic gap between simple narrative prompts and complex keyword-based prompts.
Artificial Intelligence has gained a lot of traction in the recent years, with machine learning notably starting to see more applications across a varied range of fields. One specific machine learning application that is of interest to us is that of software safety and security, especially in the context of parallel programs. The issue of being able to detect concurrency bugs automatically has intrigued programmers for a long time, as the added layer of complexity makes concurrent programs more prone to failure. The development of such automatic detection tools provides considerable benefits to programmers in terms of saving time while debugging, as well as reducing the number of unexpected bugs. We believe machine learning may help achieve this goal by providing additional advantages over current approaches, in terms of both overall tool accuracy as well as programming language flexibility. However, due to the presence of numerous challenges specific to the machine learning approach (correctly labelling a sufficiently large dataset, finding the best model types/architectures and so forth), we have to approach each issue of developing such a tool separately. Therefore, the focus of this project is on comparing both common and recent machine learning approaches. We abstract away the complexity of procuring a labelled dataset of concurrent programs under the form of a synthetic dataset that we define and generate with the scope of simulating real-life (concurrent) programs. We formulate hypotheses about fundamental limits of various machine learning model types which we then validate by running extensive tests on our synthetic dataset. We hope that our findings provide more insight in the advantages and disadvantages of various model types when modelling programs using machine learning, as well as any other related field (e.g. NLP).
Data trading has been hindered by privacy concerns associated with user-owned data and the infinite reproducibility of data, making it challenging for data owners to retain exclusive rights over their data once it has been disclosed. Traditional data pricing models relied on uniform pricing or subscription-based models. However, with the development of Privacy-Preserving Computing techniques, the market can now protect the privacy and complete transactions using progressively disclosed information, which creates a technical foundation for generating greater social welfare through data usage. In this study, we propose a novel approach to modeling multi-round data trading with progressively disclosed information using a matchmaking-based Markov Decision Process (MDP) and introduce a Social Welfare-optimized Data Pricing Mechanism (SWDPM) to find optimal pricing strategies. To the best of our knowledge, this is the first study to model multi-round data trading with progressively disclosed information. Numerical experiments demonstrate that the SWDPM can increase social welfare 3 times by up to 54\% in trading feasibility, 43\% in trading efficiency, and 25\% in trading fairness by encouraging better matching of demand and price negotiation among traders.
Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.
AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.
Deep neural networks (DNN) have achieved unprecedented success in numerous machine learning tasks in various domains. However, the existence of adversarial examples has raised concerns about applying deep learning to safety-critical applications. As a result, we have witnessed increasing interests in studying attack and defense mechanisms for DNN models on different data types, such as images, graphs and text. Thus, it is necessary to provide a systematic and comprehensive overview of the main threats of attacks and the success of corresponding countermeasures. In this survey, we review the state of the art algorithms for generating adversarial examples and the countermeasures against adversarial examples, for the three popular data types, i.e., images, graphs and text.