亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we clarify reconstruction-based discretization schemes for unstructured grids and discuss their economically high-order versions, which can achieve high-order accuracy under certain conditions at little extra cost. The clarification leads to one of the most economical approaches: the flux-and-solution-reconstruction (FSR) approach, where highly economical schemes can be constructed based on an extended kappa-scheme combined with economical flux reconstruction formulas, achieving up to fifth-order accuracy (sixth-order with zero dissipation) when a grid is regular. Various economical FSR schemes are presented and their formal orders of accuracy are verified by numerical experiments.

相關內容

機器學習(xi)系統設計系統評估(gu)標準

This paper introduces a novel approach to compute the numerical fluxes at the cell boundaries for a cell-centered conservative numerical scheme. Explicit gradients used in deriving the reconstruction polynomials are replaced by high-order gradients computed by compact finite differences, referred to as implicit gradients in this paper. The new approach has superior dispersion and dissipation properties in comparison to the compact reconstruction approach. A problem-independent shock capturing approach via Boundary Variation Diminishing (BVD) algorithm is used to suppress oscillations for the simulation of flows with shocks and material interfaces. Several numerical test cases are carried out to verify the proposed method's capability using the implicit gradient method for compressible flows.

Technological advancements of Blockchain and other Distributed Ledger Techniques (DLTs) promise to provide significant advantages to applications seeking transparency, redundancy, and accountability. Actual adoption of these emerging technologies requires incorporating cost-effective, fast, QoS-enabled, secure, and scalable design. With the recent advent of quantum computing, the security of current blockchain cryptosystems can be compromised to a greater extent. Quantum algorithms like Shor's large integer factorization algorithm and Grover's unstructured database search algorithm can provide exponential and quadratic speedup, respectively, in contrast to their classical counterpart. This can put threats on both public-key cryptosystems and hash functions, which necessarily demands to migrate from classical cryptography to quantum-secure cryptography. Moreover, the computational latency of blockchain platforms causes slow transaction speed, so quantum computing principles might provide significant speedup and scalability in transaction processing and accelerating the mining process. For such purpose, this article first studies current and future classical state-of-the-art blockchain scalability and security primitives. The relevant quantum-safe blockchain cryptosystem initiatives which have been taken by Bitcoin, Ethereum, Corda, etc. are stated and compared with respect to key sizes, hash length, execution time, computational overhead, and energy efficiency. Post Quantum Cryptographic algorithms like Code-based, Lattice-based, Multivariate-based, and other schemes are not well suited for classical blockchain technology due to several disadvantages in practical implementation. Decryption latency, massive consumption of computational resources, and increased key size are few challenges that can hinder blockchain performance.

The dispersion error is often the dominant error for computed solutions of wave propagation problems with high-frequency components. In this paper, we define and give explicit examples of $\alpha$-dispersion-relation-preserving schemes. These are dual-pair finite-difference schemes for systems of hyperbolic partial differential equations which preserve the dispersion-relation of the continuous problem uniformly to an $\alpha \%$-error tolerance. We give a general framework to design provably stable finite difference operators that preserve the dispersion relation for hyperbolic systems such as the elastic wave equation. The operators we derive here can resolve the highest frequency ($\pi$-mode) present on any equidistant grid at a tolerance of $5\%$ error. This significantly improves on the current standard that have a tolerance of $100 \%$ error.

In this paper, we consider the asymptotical regularization with convex constraints for nonlinear ill-posed problems. The method allows to use non-smooth penalty terms, including the L1-like and the total variation-like penalty functionals, which are significant in reconstructing special features of solutions such as sparsity and piecewise constancy. Under certain conditions we give convergence properties of the methods. Moreover, we propose Runge-Kutta type methods to discrete the initial value problems to construct new type iterative regularization methods.

This paper describes solution methods for linear discrete ill-posed problems defined by third order tensors and the t-product formalism introduced in [M. E. Kilmer and C. D. Martin, Factorization strategies for third order tensors, Linear Algebra Appl., 435 (2011), pp. 641--658]. A t-product Arnoldi (t-Arnoldi) process is defined and applied to reduce a large-scale Tikhonov regularization problem for third order tensors to a problem of small size. The data may be represented by a laterally oriented matrix or a third order tensor, and the regularization operator is a third order tensor. The discrepancy principle is used to determine the regularization parameter and the number of steps of the t-Arnoldi process. Numerical examples compare results for several solution methods, and illustrate the potential superiority of solution methods that tensorize over solution methods that matricize linear discrete ill-posed problems for third order tensors.

We provide a control-theoretic perspective on optimal tensor algorithms for minimizing a convex function in a finite-dimensional Euclidean space. Given a function $\Phi: \mathbb{R}^d \rightarrow \mathbb{R}$ that is convex and twice continuously differentiable, we study a closed-loop control system that is governed by the operators $\nabla \Phi$ and $\nabla^2 \Phi$ together with a feedback control law $\lambda(\cdot)$ satisfying the algebraic equation $(\lambda(t))^p\|\nabla\Phi(x(t))\|^{p-1} = \theta$ for some $\theta \in (0, 1)$. Our first contribution is to prove the existence and uniqueness of a local solution to this system via the Banach fixed-point theorem. We present a simple yet nontrivial Lyapunov function that allows us to establish the existence and uniqueness of a global solution under certain regularity conditions and analyze the convergence properties of trajectories. The rate of convergence is $O(1/t^{(3p+1)/2})$ in terms of objective function gap and $O(1/t^{3p})$ in terms of squared gradient norm. Our second contribution is to provide two algorithmic frameworks obtained from discretization of our continuous-time system, one of which generalizes the large-step A-HPE framework and the other of which leads to a new optimal $p$-th order tensor algorithm. While our discrete-time analysis can be seen as a simplification and generalization of~\citet{Monteiro-2013-Accelerated}, it is largely motivated by the aforementioned continuous-time analysis, demonstrating the fundamental role that the feedback control plays in optimal acceleration and the clear advantage that the continuous-time perspective brings to algorithmic design. A highlight of our analysis is that we show that all of the $p$-th order optimal tensor algorithms that we discuss minimize the squared gradient norm at a rate of $O(k^{-3p})$, which complements the recent analysis.

In this article, we develop and analyse a new spectral method to solve the semi-classical Schr\"odinger equation based on the Gaussian wave-packet transform (GWPT) and Hagedorn's semi-classical wave-packets (HWP). The GWPT equivalently recasts the highly oscillatory wave equation as a much less oscillatory one (the $w$ equation) coupled with a set of ordinary differential equations governing the dynamics of the so-called GWPT parameters. The Hamiltonian of the $ w $ equation consists of a quadratic part and a small non-quadratic perturbation, which is of order $ \mathcal{O}(\sqrt{\varepsilon }) $, where $ \varepsilon\ll 1 $ is the rescaled Planck's constant. By expanding the solution of the $ w $ equation as a superposition of Hagedorn's wave-packets, we construct a spectral method while the $ \mathcal{O}(\sqrt{\varepsilon}) $ perturbation part is treated by the Galerkin approximation. This numerical implementation of the GWPT avoids imposing artificial boundary conditions and facilitates rigorous numerical analysis. For arbitrary dimensional cases, we establish how the error of solving the semi-classical Schr\"odinger equation with the GWPT is determined by the errors of solving the $ w $ equation and the GWPT parameters. We prove that this scheme has the spectral convergence with respect to the number of Hagedorn's wave-packets in one dimension. Extensive numerical tests are provided to demonstrate the properties of the proposed method.

We give a new interpretation of basic belief assignment transformation into probability distribution, and use directed acyclic network called belief evolution network to describe the causality between the focal elements of a BBA. On this basis, a new probability transformations method called full causality probability transformation is proposed, and this method is superior to all previous method after verification from the process and the result. In addition, using this method combined with disjunctive combination rule, we propose a new probabilistic combination rule called disjunctive transformation combination rule. It has an excellent ability to merge conflicts and an interesting pseudo-Matthew effect, which offer a new idea to information fusion besides the combination rule of Dempster.

The aim of this work is to develop a fully-distributed algorithmic framework for training graph convolutional networks (GCNs). The proposed method is able to exploit the meaningful relational structure of the input data, which are collected by a set of agents that communicate over a sparse network topology. After formulating the centralized GCN training problem, we first show how to make inference in a distributed scenario where the underlying data graph is split among different agents. Then, we propose a distributed gradient descent procedure to solve the GCN training problem. The resulting model distributes computation along three lines: during inference, during back-propagation, and during optimization. Convergence to stationary solutions of the GCN training problem is also established under mild conditions. Finally, we propose an optimization criterion to design the communication topology between agents in order to match with the graph describing data relationships. A wide set of numerical results validate our proposal. To the best of our knowledge, this is the first work combining graph convolutional neural networks with distributed optimization.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

北京阿比特科技有限公司