亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a new numerical approach for wave induced dynamic fracture. The method is based on a discontinuous Galerkin approximation of the first-order hyperbolic system for elastic waves and a phase-field approximation of brittle fracture driven by the maximum tension. The algorithm is staggered in time and combines an implicit midpoint rule for the wave propagation followed by an implicit Euler step for the phase-field evolution. At fracture, the material is degraded, and the waves are reflected at the diffusive interfaces. Two and three-dimensional examples demonstrate the advantages of the proposed method for the computation of crack growth and spalling initiated by reflected and superposed waves.

相關內容

This paper presents a framework for modeling failure in quasi-brittle geomaterials under different loading conditions. A micromechanics-based model is proposed in which the field variables are linked to physical mechanisms at the microcrack level: damage is related to the growth of microcracks, while plasticity is related to the frictional sliding of closed microcracks. Consequently, the hardening/softening functions and parameters entering the free energy follow from the definition of a single degradation function and the elastic material properties. The evolution of opening microcracks in tension leads to brittle behavior and mode I fracture, while the evolution of closed microcracks under frictional sliding in compression/shear leads to ductile behavior and mode II fracture. Frictional sliding is endowed with a non-associative law, a crucial aspect of the model that considers the effect of dilation and allows for realistic material responses with non-vanishing frictional energy dissipation. Despite the non-associative law, a variationally consistent formulation is presented using notions of energy balance and stability, following the energetic formulation for rate-independent systems. The material response of the model is first described, followed by the numerical implementation procedure and several benchmark finite element simulations. The results highlight the ability of the model to describe tensile, shear, and mixed-mode fracture, as well as responses with brittle-to-ductile transition. A key result is that, by virtue of the micromechanical arguments, realistic failure modes can be captured, without resorting to the usual heuristic modifications considered in the phase-field literature. The numerical results are thoroughly discussed with reference to previous numerical studies, experimental evidence, and analytical fracture criteria.

A novel numerical approach to solving the shallow-water equations on the sphere using high-order numerical discretizations in both space and time is proposed. A space-time tensor formalism is used to express the equations of motion covariantly and to describe the geometry of the rotated cubed-sphere grid. The spatial discretization is done with the direct flux reconstruction method, which is an alternative formulation to the discontinuous Galerkin approach. The equations of motion are solved in differential form and the resulting discretization is free from quadrature rules. It is well known that the time step of traditional explicit methods is limited by the phase velocity of the fastest waves. Exponential integration is employed to enable integrations with significantly larger time step sizes and improve the efficiency of the overall time integration. New multistep-type exponential propagation iterative methods of orders 4, 5 and 6 are constructed and applied to integrate the shallow-water equations in time. These new schemes enable time integration with high-order accuracy but without significant increases in computational time compared to low-order methods. The exponential matrix functions-vector products used in the exponential schemes are approximated using the complex-step approximation of the Jacobian in the Krylov-based KIOPS (Krylov with incomplete orthogonalization procedure solver) algorithm. Performance of the new numerical methods is evaluated using a set of standard benchmark tests.

We investigate a gradient flow structure of the Ginzburg--Landau--Devonshire (GLD) model for anisotropic ferroelectric materials by reconstructing its energy form. We show that the modified energy form admits at least one minimizer. Under some regularity assumptions for the electric charge distribution and the initial polarization field, we prove that the $L^2$ gradient flow structure has a unique solution. To simulate the GLD model numerically, we propose an energy-stable semi-implicit time-stepping scheme and a hybridizable discontinuous Galerkin method for space discretization. Some numerical tests are provided to verify the stability and convergence of the proposed numerical scheme as well as some properties of ferroelectric materials.

The impact of increased stiffness and pulsatile load on the circulation and their influence on heart performance have been documented not only for cardiovascular events but also for ventricular dysfunctions. For this reason, computer models of cardiac electromechanics (EM) have to integrate effects of the circulatory system on heart function to be relevant for clinical applications. Currently it is not feasible to consider three-dimensional (3D) models of the entire circulation. Instead, simplified representations of the circulation are used, ensuring a satisfactory trade-off between accuracy and computational cost. In this work, we propose a novel and stable strategy to couple a 3D EM model of the heart to a one-dimensional (1D) model of blood flow in the arterial system. A personalised coupled 3D-1D model of LV and arterial system is built and used in a numerical benchmark to demonstrate robustness and accuracy of our scheme over a range of time steps. Validation of the coupled model is performed by investigating the coupled system's physiological response to variations in the arterial system affecting pulse wave propagation, comprising aortic stiffening, aortic stenosis or bifurcations causing wave reflections. Our results show that the coupled 3D-1D model is robust, stable and correctly replicates known physiology. In comparison with standard coupled 3D-0D models, additional computational costs are negligible, thus facilitating the use of our coupled 3D-1D model as a key methodology in studies where wave propagation effects are under investigation.

In this paper we advance the analysis of discretizations for a fluid-structure interaction model of the monolithic coupling between the free flow of a viscous Newtonian fluid and a deformable porous medium separated by an interface. A five-field mixed-primal finite element scheme is proposed solving for Stokes velocity-pressure and Biot displacement-total pressure-fluid pressure. Adequate inf-sup conditions are derived, and one of the distinctive features of the formulation is that its stability is established robustly in all material parameters. We propose robust preconditioners for this perturbed saddle-point problem using appropriately weighted operators in fractional Sobolev and metric spaces at the interface. The performance is corroborated by several test cases, including the application to interfacial flow in the brain.

High-index saddle dynamics provides an effective means to compute the any-index saddle points and construct the solution landscape. In this paper we prove the optimal-order error estimates for Euler discretization of high-index saddle dynamics with respect to the time step size, which remains untreated in the literature. We overcome the main difficulties that lie in the strong nonlinearity of the saddle dynamics and the orthonormalization procedure in the numerical scheme that is uncommon in standard discretization of differential equations. The derived methods are further extended to study the generalized high-index saddle dynamics for non-gradient systems and provide theoretical support for the accuracy of numerical implementations.

We consider the Cauchy problem for a first-order evolution equation with memory in a finite-dimensional Hilbert space when the integral term is related to the time derivative of the solution. The main problems of the approximate solution of such nonlocal problems are due to the necessity to work with the approximate solution for all previous time moments. We propose a transformation of the first-order integrodifferential equation to a system of local evolutionary equations. We use the approach known in the theory of Voltaire integral equations with an approximation of the difference kernel by the sum of exponents. We formulate a local problem for a weakly coupled system of equations with additional ordinary differential equations. We have given estimates of the stability of the solution by initial data and the right-hand side for the solution of the corresponding Cauchy problem. The primary attention is paid to constructing and investigating the stability of two-level difference schemes, which are convenient for computational implementation. The numerical solution of a two-dimensional model problem for the evolution equation of the first order, when the Laplace operator conditions the dependence on spatial variables, is presented.

We study dynamical Galerkin schemes for evolutionary partial differential equations (PDEs), where the projection operator changes over time. When selecting a subset of basis functions, the projection operator is non-differentiable in time and an integral formulation has to be used. We analyze the projected equations with respect to existence and uniqueness of the solution and prove that non-smooth projection operators introduce dissipation, a result which is crucial for adaptive discretizations of PDEs, e.g., adaptive wavelet methods. For the Burgers equation we illustrate numerically that thresholding the wavelet coefficients, and thus changing the projection space, will indeed introduce dissipation of energy. We discuss consequences for the so-called `pseudo-adaptive' simulations, where time evolution and dealiasing are done in Fourier space, whilst thresholding is carried out in wavelet space. Numerical examples are given for the inviscid Burgers equation in 1D and the incompressible Euler equations in 2D and 3D.

Most of the lattice Boltzmann methods simulate an approximation of the sharp interface problem of dissolution and precipitation. In such studies the curvature-driven motion of interface is neglected in the Gibbs-Thomson condition. In order to simulate those phenomena with or without curvature-driven motion, we propose a phase-field model which is derived from a thermodynamic functional of grand-potential. Compared to the well-known free energy, the main advantage of the grand-potential is to provide a theoretical framework which is consistent with the equilibrium properties such as the equality of chemical potentials. The model is composed of one equation for the phase-field {\phi} coupled with one equation for the chemical potential {\mu}. In the phase-field method, the curvature-driven motion is always contained in the phase-field equation. For canceling it, a counter term must be added in the {\phi}-equation. For reason of mass conservation, the {\mu}-equation is written with a mixed formulation which involves the composition c and the chemical potential. The closure relationship between c and {\mu} is derived by assuming quadratic free energies of bulk phases. The anti-trapping current is also considered in the composition equation for simulations with null diffusion in solid. The lattice Boltzmann schemes are implemented in LBM_saclay, a numerical code running on various High Performance Computing architectures. Validations are carried out with several analytical solutions representative of dissolution and precipitation. Simulations with or without counter term are compared on the shape of porous medium characterized by microtomography. The computations have run on a single GPU-V100.

In order to avoid the curse of dimensionality, frequently encountered in Big Data analysis, there was a vast development in the field of linear and nonlinear dimension reduction techniques in recent years. These techniques (sometimes referred to as manifold learning) assume that the scattered input data is lying on a lower dimensional manifold, thus the high dimensionality problem can be overcome by learning the lower dimensionality behavior. However, in real life applications, data is often very noisy. In this work, we propose a method to approximate $\mathcal{M}$ a $d$-dimensional $C^{m+1}$ smooth submanifold of $\mathbb{R}^n$ ($d \ll n$) based upon noisy scattered data points (i.e., a data cloud). We assume that the data points are located "near" the lower dimensional manifold and suggest a non-linear moving least-squares projection on an approximating $d$-dimensional manifold. Under some mild assumptions, the resulting approximant is shown to be infinitely smooth and of high approximation order (i.e., $O(h^{m+1})$, where $h$ is the fill distance and $m$ is the degree of the local polynomial approximation). The method presented here assumes no analytic knowledge of the approximated manifold and the approximation algorithm is linear in the large dimension $n$. Furthermore, the approximating manifold can serve as a framework to perform operations directly on the high dimensional data in a computationally efficient manner. This way, the preparatory step of dimension reduction, which induces distortions to the data, can be avoided altogether.

北京阿比特科技有限公司