AI-synthesized text and images have gained significant attention, particularly due to the widespread dissemination of multi-modal manipulations on the internet, which has resulted in numerous negative impacts on society. Existing methods for multi-modal manipulation detection and grounding primarily focus on fusing vision-language features to make predictions, while overlooking the importance of modality-specific features, leading to sub-optimal results. In this paper, we construct a simple and novel transformer-based framework for multi-modal manipulation detection and grounding tasks. Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment. To achieve this, we introduce visual/language pre-trained encoders and dual-branch cross-attention (DCA) to extract and fuse modality-unique features. Furthermore, we design decoupled fine-grained classifiers (DFC) to enhance modality-specific feature mining and mitigate modality competition. Moreover, we propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality using learnable queries, thereby improving the discovery of forged details. Extensive experiments on the $\rm DGM^4$ dataset demonstrate the superior performance of our proposed model compared to state-of-the-art approaches.
Subjective image quality assessment studies are used in many scenarios, such as the evaluation of compression, super-resolution, and denoising solutions. Among the available subjective test methodologies, pair comparison is attracting popularity due to its simplicity, reliability, and robustness to changes in the test conditions, e.g. display resolutions. The main problem that impairs its wide acceptance is that the number of pairs to compare by subjects grows quadratically with the number of stimuli that must be considered. Usually, the paired comparison data obtained is fed into an aggregation model to obtain a final score for each degraded image and thus, not every comparison contributes equally to the final quality score. In the past years, several solutions that sample pairs (from all possible combinations) have been proposed, from random sampling to active sampling based on the past subjects' decisions. This paper introduces a novel sampling solution called \textbf{P}redictive \textbf{S}ampling for \textbf{P}airwise \textbf{C}omparison (PS-PC) which exploits the characteristics of the input data to make a prediction of which pairs should be evaluated by subjects. The proposed solution exploits popular machine learning techniques to select the most informative pairs for subjects to evaluate, while for the other remaining pairs, it predicts the subjects' preferences. The experimental results show that PS-PC is the best choice among the available sampling algorithms with higher performance for the same number of pairs. Moreover, since the choice of the pairs is done \emph{a priori} before the subjective test starts, the algorithm is not required to run during the test and thus much more simple to deploy in online crowdsourcing subjective tests.
As the complexity of System-on-Chip (SoC) designs continues to increase, ensuring thorough verification becomes a significant challenge for system integrators. The complexity of verification can result in undetected bugs. Unlike software or firmware bugs, hardware bugs are hard to fix after deployment and they require additional logic, i.e., patching logic integrated with the design in advance in order to patch. However, the absence of a standardized metric for defining "patchability" leaves system integrators relying on their understanding of each IP and security requirements to engineer ad hoc patching designs. In this paper, we propose a theoretical patchability quantification method to analyze designs at the Register Transfer Level (RTL) with provided patching options. Our quantification defines patchability as a combination of observability and controllability so that we can analyze and compare the patchability of IP variations. This quantification is a systematic approach to estimate each patching architecture's ability to patch at run-time and complements existing patching works. In experiments, we compare several design options of the same patching architecture and discuss their differences in terms of theoretical patchability and how many potential weaknesses can be mitigated.
We propose a novel interpretable deep neural network for text classification, called ProtoryNet, based on a new concept of prototype trajectories. Motivated by the prototype theory in modern linguistics, ProtoryNet makes a prediction by finding the most similar prototype for each sentence in a text sequence and feeding an RNN backbone with the proximity of each sentence to the corresponding active prototype. The RNN backbone then captures the temporal pattern of the prototypes, which we refer to as prototype trajectories. Prototype trajectories enable intuitive and fine-grained interpretation of the reasoning process of the RNN model, in resemblance to how humans analyze texts. We also design a prototype pruning procedure to reduce the total number of prototypes used by the model for better interpretability. Experiments on multiple public data sets show that ProtoryNet is more accurate than the baseline prototype-based deep neural net and reduces the performance gap compared to state-of-the-art black-box models. In addition, after prototype pruning, the resulting ProtoryNet models only need less than or around 20 prototypes for all datasets, which significantly benefits interpretability. Furthermore, we report a survey result indicating that human users find ProtoryNet more intuitive and easier to understand than other prototype-based methods.
Traditional permutation schemes mostly focus on random scrambling of pixels, often neglecting the intrinsic image information that could enhance diffusion in image encryption algorithms. This paper introduces PermutEx, a feature-extraction-based permutation method that utilizes inherent image features to scramble pixels effectively. Unlike random permutation schemes, PermutEx extracts the spatial frequency and local contrast features of the image and ranks each pixel based on this information, identifying which pixels are more important or information-rich based on texture and edge information. In addition, a unique permutation key is generated using the Logistic-Sine Map based on chaotic behavior. The ranked pixels are permuted in conjunction with this unique key, effectively permuting the original image into a scrambled version. Experimental results indicate that the proposed method effectively disrupts the correlation in information-rich areas within the image resulting in a correlation value of 0.000062. The effective scrambling of pixels, resulting in nearly zero correlation, makes this method suitable to be used as diffusion in image encryption algorithms.
The Ornstein-Uhlenbeck (OU) process, a mean-reverting stochastic process, has been widely applied as a time series model in various domains. This paper describes the design and implementation of a model-based synthetic time series model based on a multivariate OU process and the Arbitrage Pricing Theory (APT) for generating synthetic pricing data for a complex market of interacting stocks. The objective is to create a group of synthetic stock price time series that reflects the correlation between individual stocks and clusters of stocks in how a real market behaves. We demonstrate the method using the Standard and Poor's (S&P) 500 universe of stocks as an example.
In the context of the long-tail scenario, models exhibit a strong demand for high-quality data. Data-centric approaches aim to enhance both the quantity and quality of data to improve model performance. Among these approaches, information augmentation has been progressively introduced as a crucial category. It achieves a balance in model performance by augmenting the richness and quantity of samples in the tail classes. However, there is currently a lack of research into the underlying mechanisms explaining the effectiveness of information augmentation methods. Consequently, the utilization of information augmentation in long-tail recognition tasks relies heavily on empirical and intricate fine-tuning. This work makes two primary contributions. Firstly, we approach the problem from the perspectives of feature diversity and distribution shift, introducing the concept of Feature Diversity Gain (FDG) to elucidate why information augmentation is effective. We find that the performance of information augmentation can be explained by FDG, and its performance peaks when FDG achieves an appropriate balance. Experimental results demonstrate that by using FDG to select augmented data, we can further enhance model performance without the need for any modifications to the model's architecture. Thus, data-centric approaches hold significant potential in the field of long-tail recognition, beyond the development of new model structures. Furthermore, we systematically introduce the core components and fundamental tasks of a data-centric long-tail learning framework for the first time. These core components guide the implementation and deployment of the system, while the corresponding fundamental tasks refine and expand the research area.
The key challenge of image manipulation detection is how to learn generalizable features that are sensitive to manipulations in novel data, whilst specific to prevent false alarms on authentic images. Current research emphasizes the sensitivity, with the specificity overlooked. In this paper we address both aspects by multi-view feature learning and multi-scale supervision. By exploiting noise distribution and boundary artifact surrounding tampered regions, the former aims to learn semantic-agnostic and thus more generalizable features. The latter allows us to learn from authentic images which are nontrivial to be taken into account by current semantic segmentation network based methods. Our thoughts are realized by a new network which we term MVSS-Net. Extensive experiments on five benchmark sets justify the viability of MVSS-Net for both pixel-level and image-level manipulation detection.
Few-shot image classification aims to classify unseen classes with limited labeled samples. Recent works benefit from the meta-learning process with episodic tasks and can fast adapt to class from training to testing. Due to the limited number of samples for each task, the initial embedding network for meta learning becomes an essential component and can largely affects the performance in practice. To this end, many pre-trained methods have been proposed, and most of them are trained in supervised way with limited transfer ability for unseen classes. In this paper, we proposed to train a more generalized embedding network with self-supervised learning (SSL) which can provide slow and robust representation for downstream tasks by learning from the data itself. We evaluate our work by extensive comparisons with previous baseline methods on two few-shot classification datasets ({\em i.e.,} MiniImageNet and CUB). Based on the evaluation results, the proposed method achieves significantly better performance, i.e., improve 1-shot and 5-shot tasks by nearly \textbf{3\%} and \textbf{4\%} on MiniImageNet, by nearly \textbf{9\%} and \textbf{3\%} on CUB. Moreover, the proposed method can gain the improvement of (\textbf{15\%}, \textbf{13\%}) on MiniImageNet and (\textbf{15\%}, \textbf{8\%}) on CUB by pretraining using more unlabeled data. Our code will be available at \hyperref[//github.com/phecy/SSL-FEW-SHOT.]{//github.com/phecy/ssl-few-shot.}
Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.
The low resolution of objects of interest in aerial images makes pedestrian detection and action detection extremely challenging tasks. Furthermore, using deep convolutional neural networks to process large images can be demanding in terms of computational requirements. In order to alleviate these challenges, we propose a two-step, yes and no question answering framework to find specific individuals doing one or multiple specific actions in aerial images. First, a deep object detector, Single Shot Multibox Detector (SSD), is used to generate object proposals from small aerial images. Second, another deep network, is used to learn a latent common sub-space which associates the high resolution aerial imagery and the pedestrian action labels that are provided by the human-based sources