亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep regression is an important problem with numerous applications. These range from computer vision tasks such as age estimation from photographs, to medical tasks such as ejection fraction estimation from echocardiograms for disease tracking. Semi-supervised approaches for deep regression are notably under-explored compared to classification and segmentation tasks, however. Unlike classification tasks, which rely on thresholding functions for generating class pseudo-labels, regression tasks use real number target predictions directly as pseudo-labels, making them more sensitive to prediction quality. In this work, we propose a novel approach to semi-supervised regression, namely Uncertainty-Consistent Variational Model Ensembling (UCVME), which improves training by generating high-quality pseudo-labels and uncertainty estimates for heteroscedastic regression. Given that aleatoric uncertainty is only dependent on input data by definition and should be equal for the same inputs, we present a novel uncertainty consistency loss for co-trained models. Our consistency loss significantly improves uncertainty estimates and allows higher quality pseudo-labels to be assigned greater importance under heteroscedastic regression. Furthermore, we introduce a novel variational model ensembling approach to reduce prediction noise and generate more robust pseudo-labels. We analytically show our method generates higher quality targets for unlabeled data and further improves training. Experiments show that our method outperforms state-of-the-art alternatives on different tasks and can be competitive with supervised methods that use full labels. Our code is available at //github.com/xmed-lab/UCVME.

相關內容

Image segmentation is a fundamental task in the field of imaging and vision. Supervised deep learning for segmentation has achieved unparalleled success when sufficient training data with annotated labels are available. However, annotation is known to be expensive to obtain, especially for histopathology images where the target regions are usually with high morphology variations and irregular shapes. Thus, weakly supervised learning with sparse annotations of points is promising to reduce the annotation workload. In this work, we propose a contrast-based variational model to generate segmentation results, which serve as reliable complementary supervision to train a deep segmentation model for histopathology images. The proposed method considers the common characteristics of target regions in histopathology images and can be trained in an end-to-end manner. It can generate more regionally consistent and smoother boundary segmentation, and is more robust to unlabeled `novel' regions. Experiments on two different histology datasets demonstrate its effectiveness and efficiency in comparison to previous models.

The acquisition of labels for supervised learning can be expensive. In order to improve the sample-efficiency of neural network regression, we study active learning methods that adaptively select batches of unlabeled data for labeling. We present a framework for constructing such methods out of (network-dependent) base kernels, kernel transformations and selection methods. Our framework encompasses many existing Bayesian methods based on Gaussian Process approximations of neural networks as well as non-Bayesian methods. Additionally, we propose to replace the commonly used last-layer features with sketched finite-width Neural Tangent Kernels, and to combine them with a novel clustering method. To evaluate different methods, we introduce an open-source benchmark consisting of 15 large tabular regression data sets. Our proposed method outperforms the state-of-the-art on our benchmark, scales to large data sets, and works out-of-the-box without adjusting the network architecture or training code. We provide open-source code that includes efficient implementations of all kernels, kernel transformations, and selection methods, and can be used for reproducing our results.

Neural processes (NPs) have brought the representation power of parametric deep neural networks and the reliable uncertainty estimation of non-parametric Gaussian processes together. Although recent development of NPs has shown success in both regression and classification, how to adapt NPs to multimodal data has not be carefully studied. For the first time, we propose a new model of NP family for multimodal uncertainty estimation, namely Multimodal Neural Processes. In a holistic and principled way, we develop a dynamic context memory updated by the classification error, a multimodal Bayesian aggregation mechanism to aggregate multimodal representations, and a new attention mechanism for calibrated predictions. In extensive empirical evaluation, our method achieves the state-of-the-art multimodal uncertainty estimation performance, showing its appealing ability of being robust against noisy samples and reliable in out-of-domain detection.

In this work, we investigate performing semantic segmentation solely through the training on image-sentence pairs. Due to the lack of dense annotations, existing text-supervised methods can only learn to group an image into semantic regions via pixel-insensitive feedback. As a result, their grouped results are coarse and often contain small spurious regions, limiting the upper-bound performance of segmentation. On the other hand, we observe that grouped results from self-supervised models are more semantically consistent and break the bottleneck of existing methods. Motivated by this, we introduce associate self-supervised spatially-consistent grouping with text-supervised semantic segmentation. Considering the part-like grouped results, we further adapt a text-supervised model from image-level to region-level recognition with two core designs. First, we encourage fine-grained alignment with a one-way noun-to-region contrastive loss, which reduces the mismatched noun-region pairs. Second, we adopt a contextually aware masking strategy to enable simultaneous recognition of all grouped regions. Coupled with spatially-consistent grouping and region-adapted recognition, our method achieves 59.2% mIoU and 32.4% mIoU on Pascal VOC and Pascal Context benchmarks, significantly surpassing the state-of-the-art methods.

Quantifying predictive uncertainty of neural networks has recently attracted increasing attention. In this work, we focus on measuring uncertainty of graph neural networks (GNNs) for the task of node classification. Most existing GNNs model message passing among nodes. The messages are often deterministic. Questions naturally arise: Does there exist uncertainty in the messages? How could we propagate such uncertainty over a graph together with messages? To address these issues, we propose a Bayesian uncertainty propagation (BUP) method, which embeds GNNs in a Bayesian modeling framework, and models predictive uncertainty of node classification with Bayesian confidence of predictive probability and uncertainty of messages. Our method proposes a novel uncertainty propagation mechanism inspired by Gaussian models. Moreover, we present an uncertainty oriented loss for node classification that allows the GNNs to clearly integrate predictive uncertainty in learning procedure. Consequently, the training examples with large predictive uncertainty will be penalized. We demonstrate the BUP with respect to prediction reliability and out-of-distribution (OOD) predictions. The learned uncertainty is also analyzed in depth. The relations between uncertainty and graph topology, as well as predictive uncertainty in the OOD cases are investigated with extensive experiments. The empirical results with popular benchmark datasets demonstrate the superior performance of the proposed method.

Deep ensemble is a simple and straightforward approach for approximating Bayesian inference and has been successfully applied to many classification tasks. This study aims to comprehensively investigate this approach in the multi-output regression task to predict the aerodynamic performance of a missile configuration. By scrutinizing the effect of the number of neural networks used in the ensemble, an obvious trend toward underconfidence in estimated uncertainty is observed. In this context, we propose the deep ensemble framework that applies the post-hoc calibration method, and its improved uncertainty quantification performance is demonstrated. It is compared with Gaussian process regression, the most prevalent model for uncertainty quantification in engineering, and is proven to have superior performance in terms of regression accuracy, reliability of estimated uncertainty, and training efficiency. Finally, the impact of the suggested framework on the results of Bayesian optimization is examined, showing that whether or not the deep ensemble is calibrated can result in completely different exploration characteristics. This framework can be seamlessly applied and extended to any regression task, as no special assumptions have been made for the specific problem used in this study.

The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.

Due to their increasing spread, confidence in neural network predictions became more and more important. However, basic neural networks do not deliver certainty estimates or suffer from over or under confidence. Many researchers have been working on understanding and quantifying uncertainty in a neural network's prediction. As a result, different types and sources of uncertainty have been identified and a variety of approaches to measure and quantify uncertainty in neural networks have been proposed. This work gives a comprehensive overview of uncertainty estimation in neural networks, reviews recent advances in the field, highlights current challenges, and identifies potential research opportunities. It is intended to give anyone interested in uncertainty estimation in neural networks a broad overview and introduction, without presupposing prior knowledge in this field. A comprehensive introduction to the most crucial sources of uncertainty is given and their separation into reducible model uncertainty and not reducible data uncertainty is presented. The modeling of these uncertainties based on deterministic neural networks, Bayesian neural networks, ensemble of neural networks, and test-time data augmentation approaches is introduced and different branches of these fields as well as the latest developments are discussed. For a practical application, we discuss different measures of uncertainty, approaches for the calibration of neural networks and give an overview of existing baselines and implementations. Different examples from the wide spectrum of challenges in different fields give an idea of the needs and challenges regarding uncertainties in practical applications. Additionally, the practical limitations of current methods for mission- and safety-critical real world applications are discussed and an outlook on the next steps towards a broader usage of such methods is given.

In recent years, Face Image Quality Assessment (FIQA) has become an indispensable part of the face recognition system to guarantee the stability and reliability of recognition performance in an unconstrained scenario. For this purpose, the FIQA method should consider both the intrinsic property and the recognizability of the face image. Most previous works aim to estimate the sample-wise embedding uncertainty or pair-wise similarity as the quality score, which only considers the information from partial intra-class. However, these methods ignore the valuable information from the inter-class, which is for estimating to the recognizability of face image. In this work, we argue that a high-quality face image should be similar to its intra-class samples and dissimilar to its inter-class samples. Thus, we propose a novel unsupervised FIQA method that incorporates Similarity Distribution Distance for Face Image Quality Assessment (SDD-FIQA). Our method generates quality pseudo-labels by calculating the Wasserstein Distance (WD) between the intra-class similarity distributions and inter-class similarity distributions. With these quality pseudo-labels, we are capable of training a regression network for quality prediction. Extensive experiments on benchmark datasets demonstrate that the proposed SDD-FIQA surpasses the state-of-the-arts by an impressive margin. Meanwhile, our method shows good generalization across different recognition systems.

Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.

北京阿比特科技有限公司