亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We train neural networks to perform likelihood-free inference from $(25\,h^{-1}{\rm Mpc})^2$ 2D maps containing the total mass surface density from thousands of hydrodynamic simulations of the CAMELS project. We show that the networks can extract information beyond one-point functions and power spectra from all resolved scales ($\gtrsim 100\,h^{-1}{\rm kpc}$) while performing a robust marginalization over baryonic physics at the field level: the model can infer the value of $\Omega_{\rm m} (\pm 4\%)$ and $\sigma_8 (\pm 2.5\%)$ from simulations completely different to the ones used to train it.

相關內容

This paper considers the inference for heterogeneous treatment effects in dynamic settings that covariates and treatments are longitudinal. We focus on high-dimensional cases that the sample size, $N$, is potentially much larger than the covariate vector's dimension, $d$. The marginal structural mean models are considered. We propose a "sequential model doubly robust" estimator constructed based on "moment targeted" nuisance estimators. Such nuisance estimators are carefully designed through non-standard loss functions, reducing the bias resulting from potential model misspecifications. We achieve $\sqrt N$-inference even when model misspecification occurs. We only require one nuisance model to be correctly specified at each time spot. Such model correctness conditions are weaker than all the existing work, even containing the literature on low dimensions.

Autonomous driving consists of a multitude of interacting modules, where each module must contend with errors from the others. Typically, the motion prediction module depends upon a robust tracking system to capture each agent's past movement. In this work, we systematically explore the importance of the tracking module for the motion prediction task and ultimately conclude that the overall motion prediction performance is highly sensitive to the tracking module's imperfections. We explicitly compare models that use tracking information to models that do not across multiple scenarios and conditions. We find that the tracking information plays an essential role and improves motion prediction performance in noise-free conditions. However, in the presence of tracking noise, it can potentially affect the overall performance if not studied thoroughly. We thus argue practitioners should be mindful of noise when developing and testing motion/tracking modules, or that they should consider tracking free alternatives.

Across many data domains, co-occurrence statistics about the joint appearance of objects are powerfully informative. By transforming unsupervised learning problems into decompositions of co-occurrence statistics, spectral algorithms provide transparent and efficient algorithms for posterior inference such as latent topic analysis and community detection. As object vocabularies grow, however, it becomes rapidly more expensive to store and run inference algorithms on co-occurrence statistics. Rectifying co-occurrence, the key process to uphold model assumptions, becomes increasingly more vital in the presence of rare terms, but current techniques cannot scale to large vocabularies. We propose novel methods that simultaneously compress and rectify co-occurrence statistics, scaling gracefully with the size of vocabulary and the dimension of latent space. We also present new algorithms learning latent variables from the compressed statistics, and verify that our methods perform comparably to previous approaches on both textual and non-textual data.

Motivated both by theoretical and practical considerations in topological data analysis, we generalize the $p$-Wasserstein distance on barcodes to multiparameter persistence modules. For each $p\in [1,\infty]$, we in fact introduce two such generalizations $d_{\mathcal I}^p$ and $d_{\mathcal M}^p$, such that $d_{\mathcal I}^\infty$ equals the interleaving distance and $d_{\mathcal M}^\infty$ equals the matching distance. We show that on 1- or 2-parameter persistence modules over prime fields, $d_{\mathcal I}^p$ is the universal (i.e., largest) metric satisfying a natural stability property; this extends a stability theorem of Skraba and Turner for the $p$-Wasserstein distance on barcodes in the 1-parameter case, and is also a close analogue of a universality property for the interleaving distance given by the second author. We also show that $d_{\mathcal M}^p\leq d_{\mathcal I}^p$ for all $p\in [1,\infty]$, extending an observation of Landi in the $p=\infty$ case. We observe that on 2-parameter persistence modules, $d_{\mathcal M}^p$ can be efficiently approximated. In a forthcoming companion paper, we apply some of these results to study the stability of ($2$-parameter) multicover persistent homology.

In this work, we investigate the asymptotic spectral density of the random feature matrix $M = Y Y^\ast$ with $Y = f(WX)$ generated by a single-hidden-layer neural network, where $W$ and $X$ are random rectangular matrices with i.i.d. centred entries and $f$ is a non-linear smooth function which is applied entry-wise. We prove that the Stieltjes transform of the limiting spectral distribution approximately satisfies a quartic self-consistent equation, which is exactly the equation obtained by [Pennington, Worah] and [Benigni, P\'ech\'e] with the moment method. We extend the previous results to the case of additive bias $Y=f(WX+B)$ with $B$ being an independent rank-one Gaussian random matrix, closer modelling the neural network infrastructures encountered in practice. Our key finding is that in the case of additive bias it is impossible to choose an activation function preserving the layer-to-layer singular value distribution, in sharp contrast to the bias-free case where a simple integral constraint is sufficient to achieve isospectrality. To obtain the asymptotics for the empirical spectral density we follow the resolvent method from random matrix theory via the cumulant expansion. We find that this approach is more robust and less combinatorial than the moment method and expect that it will apply also for models where the combinatorics of the former become intractable. The resolvent method has been widely employed, but compared to previous works, it is applied here to non-linear random matrices.

This paper proposes a confidence interval construction for heterogeneous treatment effects in the context of multi-stage experiments with $N$ samples and high-dimensional, $d$, confounders. Our focus is on the case of $d\gg N$, but the results obtained also apply to low-dimensional cases. We showcase that the bias of regularized estimation, unavoidable in high-dimensional covariate spaces, is mitigated with a simple double-robust score. In this way, no additional bias removal is necessary, and we obtain root-$N$ inference results while allowing multi-stage interdependency of the treatments and covariates. Memoryless property is also not assumed; treatment can possibly depend on all previous treatment assignments and all previous multi-stage confounders. Our results rely on certain sparsity assumptions of the underlying dependencies. We discover new product rate conditions necessary for robust inference with dynamic treatments.

Causal mediation analysis concerns the pathways through which a treatment affects an outcome. While most of the mediation literature focuses on settings with a single mediator, a flourishing line of research has examined settings involving multiple mediators, under which path-specific effects (PSEs) are often of interest. We consider estimation of PSEs when the treatment effect operates through K(\geq1) causally ordered, possibly multivariate mediators. In this setting, the PSEs for many causal paths are not nonparametrically identified, and we focus on a set of PSEs that are identified under Pearl's nonparametric structural equation model. These PSEs are defined as contrasts between the expectations of 2^{K+1} potential outcomes and identified via what we call the generalized mediation functional (GMF). We introduce an array of regression-imputation, weighting, and "hybrid" estimators, and, in particular, two K+2-robust and locally semiparametric efficient estimators for the GMF. The latter estimators are well suited to the use of data-adaptive methods for estimating their nuisance functions. We establish the rate conditions required of the nuisance functions for semiparametric efficiency. We also discuss how our framework applies to several estimands that may be of particular interest in empirical applications. The proposed estimators are illustrated with a simulation study and an empirical example.

We revisit the basic problem of quantum state certification: given copies of unknown mixed state $\rho\in\mathbb{C}^{d\times d}$ and the description of a mixed state $\sigma$, decide whether $\sigma = \rho$ or $\|\sigma - \rho\|_{\mathsf{tr}} \ge \epsilon$. When $\sigma$ is maximally mixed, this is mixedness testing, and it is known that $\Omega(d^{\Theta(1)}/\epsilon^2)$ copies are necessary, where the exact exponent depends on the type of measurements the learner can make [OW15, BCL20], and in many of these settings there is a matching upper bound [OW15, BOW19, BCL20]. Can one avoid this $d^{\Theta(1)}$ dependence for certain kinds of mixed states $\sigma$, e.g. ones which are approximately low rank? More ambitiously, does there exist a simple functional $f:\mathbb{C}^{d\times d}\to\mathbb{R}_{\ge 0}$ for which one can show that $\Theta(f(\sigma)/\epsilon^2)$ copies are necessary and sufficient for state certification with respect to any $\sigma$? Such instance-optimal bounds are known in the context of classical distribution testing, e.g. [VV17]. Here we give the first bounds of this nature for the quantum setting, showing (up to log factors) that the copy complexity for state certification using nonadaptive incoherent measurements is essentially given by the copy complexity for mixedness testing times the fidelity between $\sigma$ and the maximally mixed state. Surprisingly, our bound differs substantially from instance optimal bounds for the classical problem, demonstrating a qualitative difference between the two settings.

Matter evolved under influence of gravity from minuscule density fluctuations. Non-perturbative structure formed hierarchically over all scales, and developed non-Gaussian features in the Universe, known as the Cosmic Web. To fully understand the structure formation of the Universe is one of the holy grails of modern astrophysics. Astrophysicists survey large volumes of the Universe and employ a large ensemble of computer simulations to compare with the observed data in order to extract the full information of our own Universe. However, to evolve trillions of galaxies over billions of years even with the simplest physics is a daunting task. We build a deep neural network, the Deep Density Displacement Model (hereafter D$^3$M), to predict the non-linear structure formation of the Universe from simple linear perturbation theory. Our extensive analysis, demonstrates that D$^3$M outperforms the second order perturbation theory (hereafter 2LPT), the commonly used fast approximate simulation method, in point-wise comparison, 2-point correlation, and 3-point correlation. We also show that D$^3$M is able to accurately extrapolate far beyond its training data, and predict structure formation for significantly different cosmological parameters. Our study proves, for the first time, that deep learning is a practical and accurate alternative to approximate simulations of the gravitational structure formation of the Universe.

In this paper we introduce a covariance framework for the analysis of EEG and MEG data that takes into account observed temporal stationarity on small time scales and trial-to-trial variations. We formulate a model for the covariance matrix, which is a Kronecker product of three components that correspond to space, time and epochs/trials, and consider maximum likelihood estimation of the unknown parameter values. An iterative algorithm that finds approximations of the maximum likelihood estimates is proposed. We perform a simulation study to assess the performance of the estimator and investigate the influence of different assumptions about the covariance factors on the estimated covariance matrix and on its components. Apart from that, we illustrate our method on real EEG and MEG data sets. The proposed covariance model is applicable in a variety of cases where spontaneous EEG or MEG acts as source of noise and realistic noise covariance estimates are needed for accurate dipole localization, such as in evoked activity studies, or where the properties of spontaneous EEG or MEG are themselves the topic of interest, such as in combined EEG/fMRI experiments in which the correlation between EEG and fMRI signals is investigated.

北京阿比特科技有限公司