亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Memory disaggregation has recently been adopted in data centers to improve resource utilization, motivated by cost and sustainability. Recent studies on large-scale HPC facilities have also highlighted memory underutilization. A promising and non-disruptive option for memory disaggregation is rack-scale memory pooling, where shared memory pools supplement node-local memory. This work outlines the prospects and requirements for adoption and clarifies several misconceptions. We propose a quantitative method for dissecting application requirements on the memory system from the top down in three levels, moving from general, to multi-tier memory systems, and then to memory pooling. We provide a multi-level profiling tool and LBench to facilitate the quantitative approach. We evaluate a set of representative HPC workloads on an emulated platform. Our results show that prefetching activities can significantly influence memory traffic profiles. Interference in memory pooling has varied impacts on applications, depending on their access ratios to memory tiers and arithmetic intensities. Finally, in two case studies, we show the benefits of our findings at the application and system levels, achieving 50% reduction in remote access and 13% speedup in BFS, and reducing performance variation of co-located workloads in interference-aware job scheduling.

相關內容

The ability to handle objects in cluttered environment has been long anticipated by robotic community. However, most of works merely focus on manipulation instead of rendering hidden semantic information in cluttered objects. In this work, we introduce the scene graph for embodied exploration in cluttered scenarios to solve this problem. To validate our method in cluttered scenario, we adopt the Manipulation Question Answering (MQA) tasks as our test benchmark, which requires an embodied robot to have the active exploration ability and semantic understanding ability of vision and language.As a general solution framework to the task, we propose an imitation learning method to generate manipulations for exploration. Meanwhile, a VQA model based on dynamic scene graph is adopted to comprehend a series of RGB frames from wrist camera of manipulator along with every step of manipulation is conducted to answer questions in our framework.The experiments on of MQA dataset with different interaction requirements demonstrate that our proposed framework is effective for MQA task a representative of tasks in cluttered scenario.

Prior work applying semiparametric theory to causal inference has primarily focused on deriving estimators that exhibit statistical robustness under a prespecified causal model that permits identification of a desired causal parameter. However, a fundamental challenge is correct specification of such a model, which usually involves making untestable assumptions. Evidence factors is an approach to combining hypothesis tests of a common causal null hypothesis under two or more candidate causal models. Under certain conditions, this yields a test that is valid if at least one of the underlying models is correct, which is a form of causal robustness. We propose a method of combining semiparametric theory with evidence factors. We develop a causal null hypothesis test based on joint asymptotic normality of K asymptotically linear semiparametric estimators, where each estimator is based on a distinct identifying functional derived from each of K candidate causal models. We show that this test provides both statistical and causal robustness in the sense that it is valid if at least one of the K proposed causal models is correct, while also allowing for slower than parametric rates of convergence in estimating nuisance functions. We demonstrate the efficacy of our method via simulations and an application to the Framingham Heart Study.

Recently, SyncMap pioneered an approach to learn complex structures from sequences as well as adapt to any changes in underlying structures. This is achieved by using only nonlinear dynamical equations inspired by neuron group behaviors, i.e., without loss functions. Here we propose Symmetrical SyncMap that goes beyond the original work to show how to create dynamical equations and attractor-repeller points which are stable over the long run, even dealing with imbalanced continual general chunking problems (CGCPs). The main idea is to apply equal updates from negative and positive feedback loops by symmetrical activation. We then introduce the concept of memory window to allow for more positive updates. Our algorithm surpasses or ties other unsupervised state-of-the-art baselines in all 12 imbalanced CGCPs with various difficulties, including dynamically changing ones. To verify its performance in real-world scenarios, we conduct experiments on several well-studied structure learning problems. The proposed method surpasses substantially other methods in 3 out of 4 scenarios, suggesting that symmetrical activation plays a critical role in uncovering topological structures and even hierarchies encoded in temporal data.

P2P trading of energy can be a good alternative to incentivize distributed non-conventional energy production and meet the burgeoning energy demand. For efficient P2P trading, a free market for trading needs to be established while ensuring the information reliability, security, and privacy. Blockchain has been used to provide this framework, but it consumes very high energy and is slow. Further, until now, no blockchain model has considered the role of conventional electric utility companies in P2P trading. In this paper, we have introduced a credit blockchain that reduces energy consumption by employing a new mechanism to update transactions and increases speed by providing interest free loans to buyers. This model also integrates the electric utility companies within the P2P trading framework, thereby increasing members trading options. We have also discussed the pricing strategies for trading. All the above assertions have been verified through simulations, demonstrating that this model will promote P2P trading by providing enhanced security, speed, and greater trading options. The proposed model will also help trade energy at prices beneficial for both sellers and buyers.

We investigate the dimension-parametric complexity of the reachability problem in vector addition systems with states (VASS) and its extension with pushdown stack (pushdown VASS). Up to now, the problem is known to be $\mathcal{F}_k$-hard for VASS of dimension $3k+2$ (the complexity class $\mathcal{F}_k$ corresponds to the $k$th level of the fast-growing hierarchy), and no essentially better bound is known for pushdown VASS. We provide a new construction that improves the lower bound for VASS: $\mathcal{F}_k$-hardness in dimension $2k+3$. Furthermore, building on our new insights we show a new lower bound for pushdown VASS: $\mathcal{F}_k$-hardness in dimension $\frac k 2 + 4$. This dimension-parametric lower bound is strictly stronger than the upper bound for VASS, which suggests that the (still unknown) complexity of the reachability problem in pushdown VASS is higher than in plain VASS (where it is Ackermann-complete).

Anomaly detection is an important field that aims to identify unexpected patterns or data points, and it is closely related to many real-world problems, particularly to applications in finance, manufacturing, cyber security, and so on. While anomaly detection has been studied extensively in various fields, detecting future anomalies before they occur remains an unexplored territory. In this paper, we present a novel type of anomaly detection, called Precursor-of-Anomaly (PoA) detection. Unlike conventional anomaly detection, which focuses on determining whether a given time series observation is an anomaly or not, PoA detection aims to detect future anomalies before they happen. To solve both problems at the same time, we present a neural controlled differential equation-based neural network and its multi-task learning algorithm. We conduct experiments using 17 baselines and 3 datasets, including regular and irregular time series, and demonstrate that our presented method outperforms the baselines in almost all cases. Our ablation studies also indicate that the multitasking training method significantly enhances the overall performance for both anomaly and PoA detection.

Despite the recent advances in abstractive text summarization, current summarization models still suffer from generating factually inconsistent summaries, reducing their utility for real-world application. We argue that the main reason for such behavior is that the summarization models trained with maximum likelihood objective assign high probability to plausible sequences given the context, but they often do not accurately rank sequences by their consistency. In this work, we solve this problem by calibrating the likelihood of model generated sequences to better align with a consistency metric measured by natural language inference (NLI) models. The human evaluation study and automatic metrics show that the calibrated models generate more consistent and higher-quality summaries. We also show that the models trained using our method return probabilities that are better aligned with the NLI scores, which significantly increase reliability of summarization models.

Background: Missing data is a common challenge in mass spectrometry-based metabolomics, which can lead to biased and incomplete analyses. The integration of whole-genome sequencing (WGS) data with metabolomics data has emerged as a promising approach to enhance the accuracy of data imputation in metabolomics studies. Method: In this study, we propose a novel method that leverages the information from WGS data and reference metabolites to impute unknown metabolites. Our approach utilizes a multi-view variational autoencoder to jointly model the burden score, polygenetic risk score (PGS), and linkage disequilibrium (LD) pruned single nucleotide polymorphisms (SNPs) for feature extraction and missing metabolomics data imputation. By learning the latent representations of both omics data, our method can effectively impute missing metabolomics values based on genomic information. Results: We evaluate the performance of our method on empirical metabolomics datasets with missing values and demonstrate its superiority compared to conventional imputation techniques. Using 35 template metabolites derived burden scores, PGS and LD-pruned SNPs, the proposed methods achieved r2-scores > 0.01 for 71.55% of metabolites. Conclusion: The integration of WGS data in metabolomics imputation not only improves data completeness but also enhances downstream analyses, paving the way for more comprehensive and accurate investigations of metabolic pathways and disease associations. Our findings offer valuable insights into the potential benefits of utilizing WGS data for metabolomics data imputation and underscore the importance of leveraging multi-modal data integration in precision medicine research.

Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.

Analyzing observational data from multiple sources can be useful for increasing statistical power to detect a treatment effect; however, practical constraints such as privacy considerations may restrict individual-level information sharing across data sets. This paper develops federated methods that only utilize summary-level information from heterogeneous data sets. Our federated methods provide doubly-robust point estimates of treatment effects as well as variance estimates. We derive the asymptotic distributions of our federated estimators, which are shown to be asymptotically equivalent to the corresponding estimators from the combined, individual-level data. We show that to achieve these properties, federated methods should be adjusted based on conditions such as whether models are correctly specified and stable across heterogeneous data sets.

北京阿比特科技有限公司