亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Block-based visual programming environments play an increasingly important role in introducing computing concepts to K-12 students. In recent years, they have also gained popularity in neuro-symbolic AI, serving as a benchmark to evaluate general problem-solving and logical reasoning skills. The open-ended and conceptual nature of these visual programming tasks make them challenging, both for state-of-the-art AI agents as well as for novice programmers. A natural approach to providing assistance for problem-solving is breaking down a complex task into a progression of simpler subtasks; however, this is not trivial given that the solution codes are typically nested and have non-linear execution behavior. In this paper, we formalize the problem of synthesizing such a progression for a given reference block-based visual programming task. We propose a novel synthesis algorithm that generates a progression of subtasks that are high-quality, well-spaced in terms of their complexity, and solving this progression leads to solving the reference task. We show the utility of our synthesis algorithm in improving the efficacy of AI agents (in this case, neural program synthesizers) for solving tasks in the Karel programming environment. Then, we conduct a user study to demonstrate that our synthesized progression of subtasks can assist a novice programmer in solving tasks in the Hour of Code: Maze Challenge by Code-dot-org.

相關內容

Grammar compression is a general compression framework in which a string $T$ of length $N$ is represented as a context-free grammar of size $n$ whose language contains only $T$. In this paper, we focus on studying the limitations of algorithms and data structures operating on strings in grammar-compressed form. Previous work focused on proving lower bounds for grammars constructed using algorithms that achieve the approximation ratio $\rho=\mathcal{O}(\text{polylog }N)$. Unfortunately, for the majority of grammar compressors, $\rho$ is either unknown or satisfies $\rho=\omega(\text{polylog }N)$. In their seminal paper, Charikar et al. [IEEE Trans. Inf. Theory 2005] studied seven popular grammar compression algorithms: RePair, Greedy, LongestMatch, Sequential, Bisection, LZ78, and $\alpha$-Balanced. Only one of them ($\alpha$-Balanced) is known to achieve $\rho=\mathcal{O}(\text{polylog }N)$. We develop the first technique for proving lower bounds for data structures and algorithms on grammars that is fully general and does not depend on the approximation ratio $\rho$ of the used grammar compressor. Using this technique, we first prove that $\Omega(\log N/\log \log N)$ time is required for random access on RePair, Greedy, LongestMatch, Sequential, and Bisection, while $\Omega(\log\log N)$ time is required for random access to LZ78. All these lower bounds hold within space $\mathcal{O}(n\text{ polylog }N)$ and match the existing upper bounds. We also generalize this technique to prove several conditional lower bounds for compressed computation. For example, we prove that unless the Combinatorial $k$-Clique Conjecture fails, there is no combinatorial algorithm for CFG parsing on Bisection (for which it holds $\rho=\tilde{\Theta}(N^{1/2})$) that runs in $\mathcal{O}(n^c\cdot N^{3-\epsilon})$ time for all constants $c>0$ and $\epsilon>0$. Previously, this was known only for $c<2\epsilon$.

It is known that the multiplication of an $N \times M$ matrix with an $M \times P$ matrix can be performed using fewer multiplications than what the naive $NMP$ approach suggests. The most famous instance of this is Strassen's algorithm for multiplying two $2\times 2$ matrices in 7 instead of 8 multiplications. This gives rise to the constraint satisfaction problem of fast matrix multiplication, where a set of $R < NMP$ multiplication terms must be chosen and combined such that they satisfy correctness constraints on the output matrix. Despite its highly combinatorial nature, this problem has not been exhaustively examined from that perspective, as evidenced for example by the recent deep reinforcement learning approach of AlphaTensor. In this work, we propose a simple yet novel Constraint Programming approach to find non-commutative algorithms for fast matrix multiplication or provide proof of infeasibility otherwise. We propose a set of symmetry-breaking constraints and valid inequalities that are particularly helpful in proving infeasibility. On the feasible side, we find that exploiting solver performance variability in conjunction with a sparsity-based problem decomposition enables finding solutions for larger (feasible) instances of fast matrix multiplication. Our experimental results using CP Optimizer demonstrate that we can find fast matrix multiplication algorithms for matrices up to $3\times 3$ in a short amount of time.

The infinite horizon setting is widely adopted for problems of reinforcement learning (RL). These invariably result in stationary policies that are optimal. In many situations, finite horizon control problems are of interest and for such problems, the optimal policies are time-varying in general. Another setting that has become popular in recent times is of Constrained Reinforcement Learning, where the agent maximizes its rewards while it also aims to satisfy some given constraint criteria. However, this setting has only been studied in the context of infinite horizon MDPs where stationary policies are optimal. We present an algorithm for constrained RL in the Finite Horizon Setting where the horizon terminates after a fixed (finite) time. We use function approximation in our algorithm which is essential when the state and action spaces are large or continuous and use the policy gradient method to find the optimal policy. The optimal policy that we obtain depends on the stage and so is non-stationary in general. To the best of our knowledge, our paper presents the first policy gradient algorithm for the finite horizon setting with constraints. We show the convergence of our algorithm to a constrained optimal policy. We also compare and analyze the performance of our algorithm through experiments and show that our algorithm performs better than some other well known algorithms.

Developers often face challenges in code understanding, which is crucial for building and maintaining high-quality software systems. Code comments and documentation can provide some context for the code, but are often scarce or missing. This challenge has become even more pressing with the rise of large language model (LLM) based code generation tools. To understand unfamiliar code, most software developers rely on general-purpose search engines to search through various programming information resources, which often requires multiple iterations of query rewriting and information foraging. More recently, developers have turned to online chatbots powered by LLMs, such as ChatGPT, which can provide more customized responses but also incur more overhead as developers need to communicate a significant amount of context to the LLM via a textual interface. In this study, we provide the investigation of an LLM-based conversational UI in the IDE. We aim to understand the promises and obstacles for tools powered by LLMs that are contextually aware, in that they automatically leverage the developer's programming context to answer queries. To this end, we develop an IDE Plugin that allows users to query back-ends such as OpenAI's GPT-3.5 and GPT-4 with high-level requests, like: explaining a highlighted section of code, explaining key domain-specific terms, or providing usage examples for an API. We conduct an exploratory user study with 32 participants to understand the usefulness and effectiveness, as well as individual preferences in the usage of, this LLM-powered information support tool. The study confirms that this approach can aid code understanding more effectively than web search, but the degree of the benefit differed by participants' experience levels.

Programming by example (PBE) is an emerging programming paradigm that automatically synthesizes programs specified by user-provided input-output examples. Despite the convenience for end-users, implementing PBE tools often requires strong expertise in programming language and synthesis algorithms. Such a level of knowledge is uncommon among software developers. It greatly limits the broad adoption of PBE by the industry. To facilitate the adoption of PBE techniques, we propose a PBE framework called Bee, which leverages an "entity-action" model based on relational tables to ease PBE development for a wide but restrained range of domains. Implementing PBE tools with Bee only requires adapting domain-specific data entities and user actions to tables, with no need to design a domain-specific language or an efficient synthesis algorithm. The synthesis algorithm of Bee exploits bidirectional searching and constraint-solving techniques to address the challenge of value computation nested in table transformation. We evaluated Bee's effectiveness on 64 PBE tasks from three different domains and usability with a human study of 12 participants. Evaluation results show that Bee is easier to learn and use than the state-of-the-art PBE framework, and the bidirectional algorithm achieves comparable performance to domain-specifically optimized synthesizers.

The transformative influence of Large Language Models (LLMs) is profoundly reshaping the Artificial Intelligence (AI) technology domain. Notably, ChatGPT distinguishes itself within these models, demonstrating remarkable performance in multi-turn conversations and exhibiting code proficiency across an array of languages. In this paper, we carry out a comprehensive evaluation of ChatGPT's coding capabilities based on what is to date the largest catalog of coding challenges. Our focus is on the python programming language and problems centered on data structures and algorithms, two topics at the very foundations of Computer Science. We evaluate ChatGPT for its ability to generate correct solutions to the problems fed to it, its code quality, and nature of run-time errors thrown by its code. Where ChatGPT code successfully executes, but fails to solve the problem at hand, we look into patterns in the test cases passed in order to gain some insights into how wrong ChatGPT code is in these kinds of situations. To infer whether ChatGPT might have directly memorized some of the data that was used to train it, we methodically design an experiment to investigate this phenomena. Making comparisons with human performance whenever feasible, we investigate all the above questions from the context of both its underlying learning models (GPT-3.5 and GPT-4), on a vast array sub-topics within the main topics, and on problems having varying degrees of difficulty.

In this paper, we introduce novel fast matrix inversion algorithms that leverage triangular decomposition and recurrent formalism, incorporating Strassen's fast matrix multiplication. Our research places particular emphasis on triangular matrices, where we propose a novel computational approach based on combinatorial techniques for finding the inverse of a general non-singular triangular matrix. Unlike iterative methods, our combinatorial approach for (block) triangular-type matrices enables direct computation of the matrix inverse through a nonlinear combination of carefully selected combinatorial entries from the initial matrix. This unique characteristic makes our proposed method fully parallelizable, offering significant potential for efficient implementation on parallel computing architectures. Our approach demonstrates intriguing features that allow the derivation of recurrent relations for constructing the matrix inverse. By combining the (block) combinatorial approach, with a recursive triangular split method for inverting triangular matrices, we develop potentially competitive algorithms that strike a balance between efficiency and accuracy. We provide rigorous mathematical proofs of the newly presented method. Additionally, we conduct extensive numerical tests to showcase its applicability and efficiency. The comprehensive evaluation and experimental results presented in this paper confirm the practical utility of our proposed algorithms, demonstrating their superiority over classical approaches in terms of computational efficiency.

Off-policy evaluation (OPE) aims to estimate the benefit of following a counterfactual sequence of actions, given data collected from executed sequences. However, existing OPE estimators often exhibit high bias and high variance in problems involving large, combinatorial action spaces. We investigate how to mitigate this issue using factored action spaces i.e. expressing each action as a combination of independent sub-actions from smaller action spaces. This approach facilitates a finer-grained analysis of how actions differ in their effects. In this work, we propose a new family of "decomposed" importance sampling (IS) estimators based on factored action spaces. Given certain assumptions on the underlying problem structure, we prove that the decomposed IS estimators have less variance than their original non-decomposed versions, while preserving the property of zero bias. Through simulations, we empirically verify our theoretical results, probing the validity of various assumptions. Provided with a technique that can derive the action space factorisation for a given problem, our work shows that OPE can be improved "for free" by utilising this inherent problem structure.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司