亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Learning-based methods have improved locomotion skills of quadruped robots through deep reinforcement learning. However, the sim-to-real gap and low sample efficiency still limit the skill transfer. To address this issue, we propose an efficient model-based learning framework that combines a world model with a policy network. We train a differentiable world model to predict future states and use it to directly supervise a Variational Autoencoder (VAE)-based policy network to imitate real animal behaviors. This significantly reduces the need for real interaction data and allows for rapid policy updates. We also develop a high-level network to track diverse commands and trajectories. Our simulated results show a tenfold sample efficiency increase compared to reinforcement learning methods such as PPO. In real-world testing, our policy achieves proficient command-following performance with only a two-minute data collection period and generalizes well to new speeds and paths.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

In vehicle edge computing (VEC), asynchronous federated learning (AFL) is used, where the edge receives a local model and updates the global model, effectively reducing the global aggregation latency.Due to different amounts of local data,computing capabilities and locations of the vehicles, renewing the global model with same weight is inappropriate.The above factors will affect the local calculation time and upload time of the local model, and the vehicle may also be affected by Byzantine attacks, leading to the deterioration of the vehicle data. However, based on deep reinforcement learning (DRL), we can consider these factors comprehensively to eliminate vehicles with poor performance as much as possible and exclude vehicles that have suffered Byzantine attacks before AFL. At the same time, when aggregating AFL, we can focus on those vehicles with better performance to improve the accuracy and safety of the system. In this paper, we proposed a vehicle selection scheme based on DRL in VEC. In this scheme, vehicle s mobility, channel conditions with temporal variations, computational resources with temporal variations, different data amount, transmission channel status of vehicles as well as Byzantine attacks were taken into account.Simulation results show that the proposed scheme effectively improves the safety and accuracy of the global model.

Access to pre-trained models has recently emerged as a standard across numerous machine learning domains. Unfortunately, access to the original data the models were trained on may not equally be granted. This makes it tremendously challenging to fine-tune, compress models, adapt continually, or to do any other type of data-driven update. We posit that original data access may however not be required. Specifically, we propose Contrastive Abductive Knowledge Extraction (CAKE), a model-agnostic knowledge distillation procedure that mimics deep classifiers without access to the original data. To this end, CAKE generates pairs of noisy synthetic samples and diffuses them contrastively toward a model's decision boundary. We empirically corroborate CAKE's effectiveness using several benchmark datasets and various architectural choices, paving the way for broad application.

We study the problem of multi-agent reinforcement learning (multi-agent RL) with differential privacy (DP) constraints. This is well-motivated by various real-world applications involving sensitive data, where it is critical to protect users' private information. We first extend the definitions of Joint DP (JDP) and Local DP (LDP) to two-player zero-sum episodic Markov Games, where both definitions ensure trajectory-wise privacy protection. Then we design a provably efficient algorithm based on optimistic Nash value iteration and privatization of Bernstein-type bonuses. The algorithm is able to satisfy JDP and LDP requirements when instantiated with appropriate privacy mechanisms. Furthermore, for both notions of DP, our regret bound generalizes the best known result under the single-agent RL case, while our regret could also reduce to the best known result for multi-agent RL without privacy constraints. To the best of our knowledge, these are the first line of results towards understanding trajectory-wise privacy protection in multi-agent RL.

The sparsity of reward feedback remains a challenging problem in online deep reinforcement learning (DRL). Previous approaches have utilized offline demonstrations to achieve impressive results in multiple hard tasks. However, these approaches place high demands on demonstration quality, and obtaining expert-like actions is often costly and unrealistic. To tackle these problems, we propose a simple and efficient algorithm called Policy Optimization with Smooth Guidance (POSG), which leverages a small set of state-only demonstrations (where only state information is included in demonstrations) to indirectly make approximate and feasible long-term credit assignments and facilitate exploration. Specifically, we first design a trajectory-importance evaluation mechanism to determine the quality of the current trajectory against demonstrations. Then, we introduce a guidance reward computation technology based on trajectory importance to measure the impact of each state-action pair. We theoretically analyze the performance improvement caused by smooth guidance rewards and derive a new worst-case lower bound on the performance improvement. Extensive results demonstrate POSG's significant advantages in control performance and convergence speed in four sparse-reward environments, including the grid-world maze, Hopper-v4, HalfCheetah-v4, and Ant maze. Notably, the specific metrics and quantifiable results are investigated to demonstrate the superiority of POSG.

Shapley values are among the most popular tools for explaining predictions of blackbox machine learning models. However, their high computational cost motivates the use of sampling approximations, inducing a considerable degree of uncertainty. To stabilize these model explanations, we propose ControlSHAP, an approach based on the Monte Carlo technique of control variates. Our methodology is applicable to any machine learning model and requires virtually no extra computation or modeling effort. On several high-dimensional datasets, we find it can produce dramatic reductions in the Monte Carlo variability of Shapley estimates.

Multi-task robot learning holds significant importance in tackling diverse and complex scenarios. However, current approaches are hindered by performance issues and difficulties in collecting training datasets. In this paper, we propose GeRM (Generalist Robotic Model). We utilize offline reinforcement learning to optimize data utilization strategies to learn from both demonstrations and sub-optimal data, thus surpassing the limitations of human demonstrations. Thereafter, we employ a transformer-based VLA network to process multi-modal inputs and output actions. By introducing the Mixture-of-Experts structure, GeRM allows faster inference speed with higher whole model capacity, and thus resolves the issue of limited RL parameters, enhancing model performance in multi-task learning while controlling computational costs. Through a series of experiments, we demonstrate that GeRM outperforms other methods across all tasks, while also validating its efficiency in both training and inference processes. Additionally, we uncover its potential to acquire emergent skills. Additionally, we contribute the QUARD-Auto dataset, collected automatically to support our training approach and foster advancements in multi-task quadruped robot learning. This work presents a new paradigm for reducing the cost of collecting robot data and driving progress in the multi-task learning community. You can reach our project and video through the link: //songwxuan.github.io/GeRM/ .

Aerial robots have the potential to play a crucial role in assisting humans with complex and dangerous tasks. Nevertheless, the future industry demands innovative solutions to streamline the interaction process between humans and drones to enable seamless collaboration and efficient co-working. In this paper, we present a novel tele-immersive framework that promotes cognitive and physical collaboration between humans and robots through Mixed Reality (MR). This framework incorporates a novel bi-directional spatial awareness and a multi-modal virtual-physical interaction approaches. The former seamlessly integrates the physical and virtual worlds, offering bidirectional egocentric and exocentric environmental representations. The latter, leveraging the proposed spatial representation, further enhances the collaboration combining a robot planning algorithm for obstacle avoidance with a variable admittance control. This allows users to issue commands based on virtual forces while maintaining compatibility with the environment map. We validate the proposed approach by performing several collaborative planning and exploration tasks involving a drone and an user equipped with a MR headset.

Existing federated learning (FL) studies usually assume the training label space and test label space are identical. However, in real-world applications, this assumption is too ideal to be true. A new user could come up with queries that involve data from unseen classes, and such open-vocabulary queries would directly defect such FL systems. Therefore, in this work, we explicitly focus on the under-explored open-vocabulary challenge in FL. That is, for a new user, the global server shall understand her/his query that involves arbitrary unknown classes. To address this problem, we leverage the pre-trained vision-language models (VLMs). In particular, we present a novel adaptation framework tailored for VLMs in the context of FL, named as Federated Multimodal Prototyping (Fed-MP). Fed-MP adaptively aggregates the local model weights based on light-weight client residuals, and makes predictions based on a novel multimodal prototyping mechanism. Fed-MP exploits the knowledge learned from the seen classes, and robustifies the adapted VLM to unseen categories. Our empirical evaluation on various datasets validates the effectiveness of Fed-MP.

Reinforcement learning (RL) is a flexible and efficient method for programming micro-robots in complex environments. Here we investigate whether reinforcement learning can provide insights into biological systems when trained to perform chemotaxis. Namely, whether we can learn about how intelligent agents process given information in order to swim towards a target. We run simulations covering a range of agent shapes, sizes, and swim speeds to determine if the physical constraints on biological swimmers, namely Brownian motion, lead to regions where reinforcement learners' training fails. We find that the RL agents can perform chemotaxis as soon as it is physically possible and, in some cases, even before the active swimming overpowers the stochastic environment. We study the efficiency of the emergent policy and identify convergence in agent size and swim speeds. Finally, we study the strategy adopted by the reinforcement learning algorithm to explain how the agents perform their tasks. To this end, we identify three emerging dominant strategies and several rare approaches taken. These strategies, whilst producing almost identical trajectories in simulation, are distinct and give insight into the possible mechanisms behind which biological agents explore their environment and respond to changing conditions.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

北京阿比特科技有限公司