亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Most dialog systems posit that users have figured out clear and specific goals before starting an interaction. For example, users have determined the departure, the destination, and the travel time for booking a flight. However, in many scenarios, limited by experience and knowledge, users may know what they need, but still struggle to figure out clear and specific goals by determining all the necessary slots. In this paper, we identify this challenge and make a step forward by collecting a new human-to-human mixed-type dialog corpus. It contains 5k dialog sessions and 168k utterances for 4 dialog types and 5 domains. Within each session, an agent first provides user-goal-related knowledge to help figure out clear and specific goals, and then help achieve them. Furthermore, we propose a mixed-type dialog model with a novel Prompt-based continual learning mechanism. Specifically, the mechanism enables the model to continually strengthen its ability on any specific type by utilizing existing dialog corpora effectively.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

The ability to accurately predict human behavior is central to the safety and efficiency of robot autonomy in interactive settings. Unfortunately, robots often lack access to key information on which these predictions may hinge, such as people's goals, attention, and willingness to cooperate. Dual control theory addresses this challenge by treating unknown parameters of a predictive model as stochastic hidden states and inferring their values at runtime using information gathered during system operation. While able to optimally and automatically trade off exploration and exploitation, dual control is computationally intractable for general interactive motion planning, mainly due to the fundamental coupling between robot trajectory optimization and human intent inference. In this paper, we present a novel algorithmic approach to enable active uncertainty reduction for interactive motion planning based on the implicit dual control paradigm. Our approach relies on sampling-based approximation of stochastic dynamic programming, leading to a model predictive control problem that can be readily solved by real-time gradient-based optimization methods. The resulting policy is shown to preserve the dual control effect for a broad class of predictive human models with both continuous and categorical uncertainty. The efficacy of our approach is demonstrated with simulated driving examples.

As sustainability becomes an increasing priority throughout global society, academic and research institutions are assessed on their contribution to relevant research publications. This study compares four methods of identifying research publications related to United Nations Sustainable Development Goal 13: climate action. The four methods, Elsevier, STRINGS, SIRIS, and Dimensions have each developed search strings with the help of subject matter experts which are then enhanced through distinct methods to produce a final set of publications. Our analysis showed that the methods produced comparable quantities of publications but with little overlap between them. We visualised some difference in topic focus between the methods and drew links with the search strategies used. Differences between publications retrieved are likely to come from subjective interpretation of the goals, keyword selection, operationalising search strategies, AI enhancements, and selection of bibliographic database. Many of these are driven by human choices and the compound effect of the differences is likely to have resulted in non-overlapping publication sets. Each of the elements warrants deeper investigation to understand their role in identifying SDG-related research. Currently, it premature to rely on any one method to assess progress against the goal.

There are many examples of cases where access to improved models of human behavior and cognition has allowed creation of robots which can better interact with humans, and not least in road vehicle automation this is a rapidly growing area of research. Human-robot interaction (HRI) therefore provides an important applied setting for human behavior modeling - but given the vast complexity of human behavior, how complete and accurate do these models need to be? Here, we outline some possible ways of thinking about this problem, starting from the suggestion that modelers need to keep the right end goal in sight: A successful human-robot interaction, in terms of safety, performance, and human satisfaction. Efforts toward model completeness and accuracy should be focused on those aspects of human behavior to which interaction success is most sensitive. We emphasise that identifying which those aspects are is a difficult scientific objective in its own right, distinct for each given HRI context. We propose and exemplify an approach to formulating a priori hypotheses on this matter, in cases where robots are to be involved in interactions which currently take place between humans, such as in automated driving. Our perspective also highlights some possible risks of overreliance on machine-learned models of human behavior in HRI, and how to mitigate against those risks.

Session-based recommendation aims to generate recommendations for the next item of users' interest based on a given session. In this manuscript, we develop prospective preference enhanced mixed attentive model (P2MAM) to generate session-based recommendations using two important factors: temporal patterns and estimates of users' prospective preferences. Unlike existing methods, P2MAM models the temporal patterns using a light-weight while effective position-sensitive attention mechanism. In P2MAM, we also leverage the estimate of users' prospective preferences to signify important items, and generate better recommendations. Our experimental results demonstrate that P2MAM models significantly outperform the state-of-the-art methods in six benchmark datasets, with an improvement as much as 19.2%. In addition, our run-time performance comparison demonstrates that during testing, P2MAM models are much more efficient than the best baseline method, with a significant average speedup of 47.7 folds.

Data collected in clinical trials are often composed of multiple types of variables. For example, laboratory measurements and vital signs are longitudinal data of continuous or categorical variables, adverse events may be recurrent events, and death is a time-to-event variable. Missing data due to patients' discontinuation from the study or as a result of handling intercurrent events using a hypothetical strategy almost always occur during any clinical trial. Imputing these data with mixed types of variables simultaneously is a challenge that has not been studied. In this article, we propose using an approximate fully conditional specification to impute the missing data. Simulation shows the proposed method provides satisfactory results under the assumption of missing at random. Finally, real data from a major diabetes clinical trial are analyzed to illustrate the potential benefit of the proposed method.

We describe an extension of the Fanoos XAI system [Bayani et al 2022] which enables the system to learn the appropriate action to take in order to satisfy a user's request for description to be made more or less abstract. Specifically, descriptions of systems under analysis are stored in states, and in order to make a description more or less abstract, Fanoos selects an operator from a large library to apply to the state and generate a new description. Prior work on Fanoos predominately used hand-written methods for operator-selection; this current work allows Fanoos to leverage experience to learn the best operator to apply in a particular situation, balancing exploration and exploitation, leveraging expert insights when available, and utilizing similarity between the current state and past states. Additionally, in order to bootstrap the learning process (i.e., like in curriculum learning), we describe a simulated user which we implemented; this simulation allows Fanoos to gain general insights that enable reasonable courses of action, insights which later can be refined by experience with real users, as opposed to interacting with humans completely from scratch. Code implementing the methods described in the paper can be found at //github/DBay-ani/Operator_Selection_Learning_Extensions_For_Fanoos.

The history of ternary adders goes back to more than six decades ago. Since then, a multitude of ternary full adders (TFAs) have been presented in the literature. This paper aims to conduct a survey to be familiar with the utilized design methodologies and logic families and their prevalence. Although the number of papers about this topic is high, almost none of the previously presented TFAs are in their simplest form. A large number of transistors could have been eliminated by considering a partial TFA instead of a complete one. Moreover, they could have been simplified even further by assuming a partial TFA where the voltage of the output carry is either 0V or VDD. This way, less static power would be dissipated. Therefore, a strong motivation is to correct and enhance the previous designs. Furthermore, different simulation setups, which are not realistic enough, have been taken into account. Therefore, the simulation results reported in the previous papers are neither comparable nor entirely valid. Among the 75 papers in which a new design of TFA has been given, 11 papers are selected, simplified, and simulated in this paper. Simulations are carried out by HSPICE and 32nm CNFET technology while considering a standard test-bed and a complete input pattern to reveal the maximum cell delay. The simplified partial TFAs outperform their original versions in delay, power, and transistor count.

To solve the information explosion problem and enhance user experience in various online applications, recommender systems have been developed to model users preferences. Although numerous efforts have been made toward more personalized recommendations, recommender systems still suffer from several challenges, such as data sparsity and cold start. In recent years, generating recommendations with the knowledge graph as side information has attracted considerable interest. Such an approach can not only alleviate the abovementioned issues for a more accurate recommendation, but also provide explanations for recommended items. In this paper, we conduct a systematical survey of knowledge graph-based recommender systems. We collect recently published papers in this field and summarize them from two perspectives. On the one hand, we investigate the proposed algorithms by focusing on how the papers utilize the knowledge graph for accurate and explainable recommendation. On the other hand, we introduce datasets used in these works. Finally, we propose several potential research directions in this field.

Incorporating knowledge graph into recommender systems has attracted increasing attention in recent years. By exploring the interlinks within a knowledge graph, the connectivity between users and items can be discovered as paths, which provide rich and complementary information to user-item interactions. Such connectivity not only reveals the semantics of entities and relations, but also helps to comprehend a user's interest. However, existing efforts have not fully explored this connectivity to infer user preferences, especially in terms of modeling the sequential dependencies within and holistic semantics of a path. In this paper, we contribute a new model named Knowledge-aware Path Recurrent Network (KPRN) to exploit knowledge graph for recommendation. KPRN can generate path representations by composing the semantics of both entities and relations. By leveraging the sequential dependencies within a path, we allow effective reasoning on paths to infer the underlying rationale of a user-item interaction. Furthermore, we design a new weighted pooling operation to discriminate the strengths of different paths in connecting a user with an item, endowing our model with a certain level of explainability. We conduct extensive experiments on two datasets about movie and music, demonstrating significant improvements over state-of-the-art solutions Collaborative Knowledge Base Embedding and Neural Factorization Machine.

State-of-the-art recommendation algorithms -- especially the collaborative filtering (CF) based approaches with shallow or deep models -- usually work with various unstructured information sources for recommendation, such as textual reviews, visual images, and various implicit or explicit feedbacks. Though structured knowledge bases were considered in content-based approaches, they have been largely neglected recently due to the availability of vast amount of data, and the learning power of many complex models. However, structured knowledge bases exhibit unique advantages in personalized recommendation systems. When the explicit knowledge about users and items is considered for recommendation, the system could provide highly customized recommendations based on users' historical behaviors. A great challenge for using knowledge bases for recommendation is how to integrated large-scale structured and unstructured data, while taking advantage of collaborative filtering for highly accurate performance. Recent achievements on knowledge base embedding sheds light on this problem, which makes it possible to learn user and item representations while preserving the structure of their relationship with external knowledge. In this work, we propose to reason over knowledge base embeddings for personalized recommendation. Specifically, we propose a knowledge base representation learning approach to embed heterogeneous entities for recommendation. Experimental results on real-world dataset verified the superior performance of our approach compared with state-of-the-art baselines.

北京阿比特科技有限公司