Causal inference for testing clinical hypotheses from observational data presents many difficulties because the underlying data-generating model and the associated causal graph are not usually available. Furthermore, observational data may contain missing values, which impact the recovery of the causal graph by causal discovery algorithms: a crucial issue often ignored in clinical studies. In this work, we use data from a multi-centric study on endometrial cancer to analyze the impact of different missingness mechanisms on the recovered causal graph. This is achieved by extending state-of-the-art causal discovery algorithms to exploit expert knowledge without sacrificing theoretical soundness. We validate the recovered graph with expert physicians, showing that our approach finds clinically-relevant solutions. Finally, we discuss the goodness of fit of our graph and its consistency from a clinical decision-making perspective using graphical separation to validate causal pathways.
Super-resolution (SR) techniques have recently been proposed to upscale the outputs of neural radiance fields (NeRF) and generate high-quality images with enhanced inference speeds. However, existing NeRF+SR methods increase training overhead by using extra input features, loss functions, and/or expensive training procedures such as knowledge distillation. In this paper, we aim to leverage SR for efficiency gains without costly training or architectural changes. Specifically, we build a simple NeRF+SR pipeline that directly combines existing modules, and we propose a lightweight augmentation technique, random patch sampling, for training. Compared to existing NeRF+SR methods, our pipeline mitigates the SR computing overhead and can be trained up to 23x faster, making it feasible to run on consumer devices such as the Apple MacBook. Experiments show our pipeline can upscale NeRF outputs by 2-4x while maintaining high quality, increasing inference speeds by up to 18x on an NVIDIA V100 GPU and 12.8x on an M1 Pro chip. We conclude that SR can be a simple but effective technique for improving the efficiency of NeRF models for consumer devices.
We propose a simple and general framework for nonparametric estimation of heterogeneous treatment effects under fairness constraints. Under standard regularity conditions, we show that the resulting estimators possess the double robustness property. We use this framework to characterize the trade-off between fairness and the maximum welfare achievable by the optimal policy. We evaluate the methods in a simulation study and illustrate them in a real-world case study.
Detecting damage in important structures using monitored data is a fundamental task of structural health monitoring, which is very important for the structures' safety and life-cycle management. Based on the statistical pattern recognition paradigm, damage detection can be achieved by detecting changes in distribution of properly extracted damage-sensitive features (DSFs). This can be naturally formulated as a distributional change-point detection problem. A good change-point detector for damage detection should be scalable to large DSF datasets, applicable to different types of changes and able to control the false-positive indication rate. To address these challenges, we propose a new distributional change-point detection method for damage detection. We embed the elements of a DSF distributional sequence into the Wasserstein space and develop a MOSUM-type multiple change-point detector based on Fr\'echet statistics. Theoretical properties are also established. Extensive simulation studies demonstrate the superiority of our proposal against other competitors in addressing the aforementioned practical requirements. We apply our method to the cable-tension measurements monitored from a long-span cable-stayed bridge for cable damage detection. We conduct a comprehensive change-point analysis for the extracted DSF data, and find some interesting patterns from the detected changes, which provides important insights into the damage of the cable system.
We investigate the effectiveness of using a large ensemble of advanced neural language models (NLMs) for lattice rescoring on automatic speech recognition (ASR) hypotheses. Previous studies have reported the effectiveness of combining a small number of NLMs. In contrast, in this study, we combine up to eight NLMs, i.e., forward/backward long short-term memory/Transformer-LMs that are trained with two different random initialization seeds. We combine these NLMs through iterative lattice generation. Since these NLMs work complementarily with each other, by combining them one by one at each rescoring iteration, language scores attached to given lattice arcs can be gradually refined. Consequently, errors of the ASR hypotheses can be gradually reduced. We also investigate the effectiveness of carrying over contextual information (previous rescoring results) across a lattice sequence of a long speech such as a lecture speech. In experiments using a lecture speech corpus, by combining the eight NLMs and using context carry-over, we obtained a 24.4% relative word error rate reduction from the ASR 1-best baseline. For further comparison, we performed simultaneous (i.e., non-iterative) NLM combination and 100-best rescoring using the large ensemble of NLMs, which confirmed the advantage of lattice rescoring with iterative NLM combination.
Multivariate data having both continuous and discrete variables is known as mixed outcomes and has widely appeared in a variety of fields such as ecology, epidemiology, and climatology. In order to understand the probability structure of multivariate data, the estimation of the dependence structure among mixed outcomes is very important. However, when location information is equipped with multivariate data, the spatial correlation should be adequately taken into account; otherwise, the estimation of the dependence structure would be severely biased. To solve this issue, we propose a semiparametric Bayesian inference for the dependence structure among mixed outcomes while eliminating spatial correlation. To this end, we consider a hierarchical spatial model based on the rank likelihood and a latent multivariate Gaussian process. We develop an efficient algorithm for computing the posterior using the Markov Chain Monte Carlo. We also provide a scalable implementation of the model using the nearest-neighbor Gaussian process under large spatial datasets. We conduct a simulation study to validate our proposed procedure and demonstrate that the procedure successfully accounts for spatial correlation and correctly infers the dependence structure among outcomes. Furthermore, the procedure is applied to a real example collected during an international synoptic krill survey in the Scotia Sea of the Antarctic Peninsula, which includes sighting data of fin whales (Balaenoptera physalus), and the relevant oceanographic data.
Asymptotic goodness-of-fit methods in contingency table analysis can struggle with sparse data, especially in multi-way tables where it can be infeasible to meet sample size requirements for a robust application of distributional assumptions. However, algebraic statistics provides exact alternatives to these classical asymptotic methods that remain viable even with sparse data. We apply these methods to a context in psychometrics and education research that leads naturally to multi-way contingency tables: the analysis of differential item functioning (DIF). We explain concretely how to apply the exact methods of algebraic statistics to DIF analysis using the R package algstat, and we compare their performance to that of classical asymptotic methods.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.
Designing and generating new data under targeted properties has been attracting various critical applications such as molecule design, image editing and speech synthesis. Traditional hand-crafted approaches heavily rely on expertise experience and intensive human efforts, yet still suffer from the insufficiency of scientific knowledge and low throughput to support effective and efficient data generation. Recently, the advancement of deep learning induces expressive methods that can learn the underlying representation and properties of data. Such capability provides new opportunities in figuring out the mutual relationship between the structural patterns and functional properties of the data and leveraging such relationship to generate structural data given the desired properties. This article provides a systematic review of this promising research area, commonly known as controllable deep data generation. Firstly, the potential challenges are raised and preliminaries are provided. Then the controllable deep data generation is formally defined, a taxonomy on various techniques is proposed and the evaluation metrics in this specific domain are summarized. After that, exciting applications of controllable deep data generation are introduced and existing works are experimentally analyzed and compared. Finally, the promising future directions of controllable deep data generation are highlighted and five potential challenges are identified.
In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.