We relate discrepancy theory with the classic scheduling problems of minimizing max flow time and total flow time on unrelated machines. Specifically, we give a general reduction that allows us to transfer discrepancy bounds in the prefix Beck-Fiala (bounded $\ell_1$-norm) setting to bounds on the flow time of an optimal schedule. Combining our reduction with a deep result proved by Banaszczyk via convex geometry, give guarantees of $O(\sqrt{\log n})$ and $O(\sqrt{\log n} \log P)$ for max flow time and total flow time, respectively, improving upon the previous best guarantees of $O(\log n)$ and $O(\log n \log P)$. Apart from the improved guarantees, the reduction motivates seemingly easy versions of prefix discrepancy questions: any constant bound on prefix Beck-Fiala where vectors have sparsity two (sparsity one being trivial) would already yield tight guarantees for both max flow time and total flow time. While known techniques solve this case when the entries take values in $\{-1,0,1\}$, we show that they are unlikely to transfer to the more general $2$-sparse case of bounded $\ell_1$-norm.
The basic goal of survivable network design is to build cheap networks that guarantee the connectivity of certain pairs of nodes despite the failure of a few edges or nodes. A celebrated result by Jain [Combinatorica'01] provides a 2-approximation for a wide class of these problems. However nothing better is known even for very basic special cases, raising the natural question whether any improved approximation factor is possible at all. In this paper we address one of the most basic problems in this family for which 2 is still the best-known approximation factor, the Forest Augmentation Problem (FAP): given an undirected unweighted graph (that w.l.o.g. is a forest) and a collection of extra edges (links), compute a minimum cardinality subset of links whose addition to the graph makes it 2-edge-connected. Several better-than-2 approximation algorithms are known for the special case where the input graph is a tree, a.k.a. the Tree Augmentation Problem (TAP). Recently this was achieved also for the weighted version of TAP, and for the k-edge-connectivity generalization of TAP. These results heavily exploit the fact that the input graph is connected, a condition that does not hold in FAP. In this paper we breach the 2-approximation barrier for FAP. Our result is based on two main ingredients. First, we describe a reduction to the Path Augmentation Problem (PAP), the special case of FAP where the input graph is a collection of disjoint paths. Our reduction is not approximation preserving, however it is sufficiently accurate to improve on a factor 2 approximation. Second, we present a better-than-2 approximation algorithm for PAP, an open problem on its own. Here we exploit a novel notion of implicit credits which might turn out to be helpful in future related work.
The majority of internet traffic is video content. This drives the demand for video compression in order to deliver high quality video at low target bitrates. This paper investigates the impact of adjusting the rate distortion equation on compression performance. An constant of proportionality, k, is used to modify the Lagrange multiplier used in H.265 (HEVC). Direct optimisation methods are deployed to maximise BD-Rate improvement for a particular clip. This leads to up to 21% BD-Rate improvement for an individual clip. Furthermore we use a more realistic corpus of material provided by YouTube. The results show that direct optimisation using BD-rate as the objective function can lead to further gains in bitrate savings that are not available with previous approaches.
In a sports competition, a team might lose a powerful incentive to exert full effort if its final rank does not depend on the outcome of the matches still to be played. Therefore, the organiser should reduce the probability of such a situation to the extent possible. Our paper provides a classification scheme to identify these weakly (where one team is indifferent) or strongly (where both teams are indifferent) stakeless games. A statistical model is estimated to simulate the UEFA Champions League groups and compare the candidate schedules used in the 2021/22 season according to the competitiveness of the matches played in the last round(s). The option followed in four of the eight groups is found to be optimal under a wide set of parameters. Minimising the number of strongly stakeless matches is verified to be a likely goal in the computer draw of the fixture that remains hidden from the public.
Many existing algorithms for streaming geometric data analysis have been plagued by exponential dependencies in the space complexity, which are undesirable for processing high-dimensional data sets. In particular, once $d\geq\log n$, there are no known non-trivial streaming algorithms for problems such as maintaining convex hulls and L\"owner-John ellipsoids of $n$ points, despite a long line of work in streaming computational geometry since [AHV04]. We simultaneously improve these results to $\mathrm{poly}(d,\log n)$ bits of space by trading off with a $\mathrm{poly}(d,\log n)$ factor distortion. We achieve these results in a unified manner, by designing the first streaming algorithm for maintaining a coreset for $\ell_\infty$ subspace embeddings with $\mathrm{poly}(d,\log n)$ space and $\mathrm{poly}(d,\log n)$ distortion. Our algorithm also gives similar guarantees in the \emph{online coreset} model. Along the way, we sharpen results for online numerical linear algebra by replacing a log condition number dependence with a $\log n$ dependence, answering a question of [BDM+20]. Our techniques provide a novel connection between leverage scores, a fundamental object in numerical linear algebra, and computational geometry. For $\ell_p$ subspace embeddings, we give nearly optimal trade-offs between space and distortion for one-pass streaming algorithms. For instance, we give a deterministic coreset using $O(d^2\log n)$ space and $O((d\log n)^{1/2-1/p})$ distortion for $p>2$, whereas previous deterministic algorithms incurred a $\mathrm{poly}(n)$ factor in the space or the distortion [CDW18]. Our techniques have implications in the offline setting, where we give optimal trade-offs between the space complexity and distortion of subspace sketch data structures. To do this, we give an elementary proof of a "change of density" theorem of [LT80] and make it algorithmic.
Given two strings $T$ and $S$ and a set of strings $P$, for each string $p \in P$, consider the unique substrings of $T$ that have $p$ as their prefix and $S$ as their suffix. Two problems then come to mind; the first problem being the counting of such substrings, and the second problem being the problem of listing all such substrings. In this paper, we describe linear-time, linear-space suffix tree-based algorithms for both problems. More specifically, we describe an $O(|T| + |P|)$ time algorithm for the counting problem, and an $O(|T| + |P| + \#(ans))$ time algorithm for the listing problem, where $\#(ans)$ refers to the number of strings being listed in total, and $|P|$ refers to the total length of the strings in $P$. We also consider the reversed version of the problems, where one prefix condition string and multiple suffix condition strings are given instead, and similarly describe linear-time, linear-space algorithms to solve them.
This paper proposes a numerical method based on the Adomian decomposition approach for the time discretization, applied to Euler equations. A recursive property is demonstrated that allows to formulate the method in an appropriate and efficient way. To obtain a fully numerical scheme, the space discretization is achieved using the classical DG techniques. The efficiency of the obtained numerical scheme is demonstrated through numerical tests by comparison to exact solution and the popular Runge-Kutta DG method results.
Coflow is a network abstraction used to represent communication patterns in data centers. The coflow scheduling problem in large data centers is one of the most important $NP$-hard problems. Many previous studies on coflow scheduling mainly focus on the single-core model. However, with the growth of data centers, this single-core model is no longer sufficient. This paper considers the coflow scheduling problem in heterogeneous parallel networks. The heterogeneous parallel network is an architecture based on multiple network cores running in parallel. In this paper, two polynomial-time approximation algorithms are developed for scheduling divisible and indivisible coflows in heterogeneous parallel networks, respectively. Both algorithms achieve an approximation ratio of $O(\log m/ \log \log m)$ with arbitrary release times.
Low-rank matrix estimation under heavy-tailed noise is challenging, both computationally and statistically. Convex approaches have been proven statistically optimal but suffer from high computational costs, especially since robust loss functions are usually non-smooth. More recently, computationally fast non-convex approaches via sub-gradient descent are proposed, which, unfortunately, fail to deliver a statistically consistent estimator even under sub-Gaussian noise. In this paper, we introduce a novel Riemannian sub-gradient (RsGrad) algorithm which is not only computationally efficient with linear convergence but also is statistically optimal, be the noise Gaussian or heavy-tailed. Convergence theory is established for a general framework and specific applications to absolute loss, Huber loss, and quantile loss are investigated. Compared with existing non-convex methods, ours reveals a surprising phenomenon of dual-phase convergence. In phase one, RsGrad behaves as in a typical non-smooth optimization that requires gradually decaying stepsizes. However, phase one only delivers a statistically sub-optimal estimator which is already observed in the existing literature. Interestingly, during phase two, RsGrad converges linearly as if minimizing a smooth and strongly convex objective function and thus a constant stepsize suffices. Underlying the phase-two convergence is the smoothing effect of random noise to the non-smooth robust losses in an area close but not too close to the truth. Lastly, RsGrad is applicable for low-rank tensor estimation under heavy-tailed noise where a statistically optimal rate is attainable with the same phenomenon of dual-phase convergence, and a novel shrinkage-based second-order moment method is guaranteed to deliver a warm initialization. Numerical simulations confirm our theoretical discovery and showcase the superiority of RsGrad over prior methods.
The problem of scheduling unrelated machines has been studied since the inception of algorithmic mechanism design~\cite{NR99}. It is a resource allocation problem that entails assigning $m$ tasks to $n$ machines for execution. Machines are regarded as strategic agents who may lie about their execution costs so as to minimize their allocated workload. To address the situation when monetary payment is not an option to compensate the machines' costs, \citeauthor{DBLP:journals/mst/Koutsoupias14} [2014] devised two \textit{truthful} mechanisms, K and P respectively, that achieve an approximation ratio of $\frac{n+1}{2}$ and $n$, for social cost minimization. In addition, no truthful mechanism can achieve an approximation ratio better than $\frac{n+1}{2}$. Hence, mechanism K is optimal. While approximation ratio provides a strong worst-case guarantee, it also limits us to a comprehensive understanding of mechanism performance on various inputs. This paper investigates these two scheduling mechanisms beyond the worst case. We first show that mechanism K achieves a smaller social cost than mechanism P on every input. That is, mechanism K is pointwise better than mechanism P. Next, for each task $j$, when machines' execution costs $t_i^j$ are independent and identically drawn from a task-specific distribution $F^j(t)$, we show that the average-case approximation ratio of mechanism K converges to a constant. This bound is tight for mechanism K. For a better understanding of this distribution dependent constant, on the one hand, we estimate its value by plugging in a few common distributions; on the other, we show that this converging bound improves a known bound \cite{DBLP:conf/aaai/Zhang18} which only captures the single-task setting. Last, we find that the average-case approximation ratio of mechanism P converges to the same constant.
We present self-supervised geometric perception (SGP), the first general framework to learn a feature descriptor for correspondence matching without any ground-truth geometric model labels (e.g., camera poses, rigid transformations). Our first contribution is to formulate geometric perception as an optimization problem that jointly optimizes the feature descriptor and the geometric models given a large corpus of visual measurements (e.g., images, point clouds). Under this optimization formulation, we show that two important streams of research in vision, namely robust model fitting and deep feature learning, correspond to optimizing one block of the unknown variables while fixing the other block. This analysis naturally leads to our second contribution -- the SGP algorithm that performs alternating minimization to solve the joint optimization. SGP iteratively executes two meta-algorithms: a teacher that performs robust model fitting given learned features to generate geometric pseudo-labels, and a student that performs deep feature learning under noisy supervision of the pseudo-labels. As a third contribution, we apply SGP to two perception problems on large-scale real datasets, namely relative camera pose estimation on MegaDepth and point cloud registration on 3DMatch. We demonstrate that SGP achieves state-of-the-art performance that is on-par or superior to the supervised oracles trained using ground-truth labels.