This volume contains the proceedings of the 14th International Symposium on Games, Automata, Logics, and Formal Verification (GandALF 2023). The aim of GandALF 2023 symposium is to bring together researchers from academia and industry who are actively working in the fields of Games, Automata, Logics, and Formal Verification. The idea is to cover an ample spectrum of themes, ranging from theory to applications, and stimulate cross-fertilization.
This volume contains the proceedings of the 19th International Conference on Quantum Physics and Logic (QPL 2022), which was held June 27-July 1, 2022 at Wolfson College, University of Oxford, UK. QPL is an annual conference that brings together academic and industry researchers working on mathematical foundations of quantum computation, quantum physics, and related areas. The main focus is on the use of algebraic and categorical structures, formal languages, semantic methods, as well as other mathematical and computer scientific techniques applicable to the study of physical systems, physical processes, and their composition.
This volume contains the proceedings of the Eighteenth International Workshop on the ACL2 Theorem Prover and Its Applications (ACL2-2023), a two-day workshop held at the University of Texas at Austin and online, on November 13-14. These workshops provide a major technical forum for users of the ACL2 theorem prover to present research related to ACL2 and its applications.
This report presents the takeaways of the inaugural Workshop on Generative AI and Law (GenLaw), held in July 2023. A cross-disciplinary group of practitioners and scholars from computer science and law convened to discuss the technical, doctrinal, and policy challenges presented by law for Generative AI, and by Generative AI for law, with an emphasis on U.S. law in particular. We begin the report with a high-level statement about why Generative AI is both immensely significant and immensely challenging for law. To meet these challenges, we conclude that there is an essential need for 1) a shared knowledge base that provides a common conceptual language for experts across disciplines; 2) clarification of the distinctive technical capabilities of generative-AI systems, as compared and contrasted to other computer and AI systems; 3) a logical taxonomy of the legal issues these systems raise; and, 4) a concrete research agenda to promote collaboration and knowledge-sharing on emerging issues at the intersection of Generative AI and law. In this report, we synthesize the key takeaways from the GenLaw workshop that begin to address these needs. All of the listed authors contributed to the workshop upon which this report is based, but they and their organizations do not necessarily endorse all of the specific claims in this report.
We evaluate how well LLMs understand African American Language (AAL) in comparison to their performance on White Mainstream English (WME), the encouraged "standard" form of English taught in American classrooms. We measure LLM performance using automatic metrics and human judgments for two tasks: a counterpart generation task, where a model generates AAL (or WME) given WME (or AAL), and a masked span prediction (MSP) task, where models predict a phrase that was removed from their input. Our contributions include: (1) evaluation of six pre-trained, large language models on the two language generation tasks; (2) a novel dataset of AAL text from multiple contexts (social media, hip-hop lyrics, focus groups, and linguistic interviews) with human-annotated counterparts in WME; and (3) documentation of model performance gaps that suggest bias and identification of trends in lack of understanding of AAL features.
We present new insights and a novel paradigm (StEik) for learning implicit neural representations (INR) of shapes. In particular, we shed light on the popular eikonal loss used for imposing a signed distance function constraint in INR. We show analytically that as the representation power of the network increases, the optimization approaches a partial differential equation (PDE) in the continuum limit that is unstable. We show that this instability can manifest in existing network optimization, leading to irregularities in the reconstructed surface and/or convergence to sub-optimal local minima, and thus fails to capture fine geometric and topological structure. We show analytically how other terms added to the loss, currently used in the literature for other purposes, can actually eliminate these instabilities. However, such terms can over-regularize the surface, preventing the representation of fine shape detail. Based on a similar PDE theory for the continuum limit, we introduce a new regularization term that still counteracts the eikonal instability but without over-regularizing. Furthermore, since stability is now guaranteed in the continuum limit, this stabilization also allows for considering new network structures that are able to represent finer shape detail. We introduce such a structure based on quadratic layers. Experiments on multiple benchmark data sets show that our new regularization and network are able to capture more precise shape details and more accurate topology than existing state-of-the-art.
The Kadison-Singer Conjecture, as proved by Marcus, Spielman, and Srivastava (MSS) [Ann. Math. 182, 327-350 (2015)], has been informally thought of as a strengthening of Batson, Spielman, and Srivastava's theorem that every undirected graph has a linear-sized spectral sparsifier [SICOMP 41, 1704-1721 (2012)]. We formalize this intuition by using a corollary of the MSS result to derive the existence of spectral sparsifiers with a number of edges linear in their number of vertices for all undirected, weighted graphs. The proof consists of two steps. First, following a suggestion of Srivastava [Asia Pac. Math. Newsl. 3, 15-20 (2013)], we show the result in the special case of graphs with bounded leverage scores by repeatedly applying the MSS corollary to partition the graph, while maintaining an appropriate bound on the leverage scores of each subgraph. Then, we extend to the general case by constructing a recursive algorithm that repeatedly (i) divides edges with high leverage scores into multiple parallel edges and (ii) uses the bounded leverage score case to sparsify the resulting graph.
This paper presents an exhaustive quantitative and qualitative evaluation of Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning. We employ eight distinct datasets that encompass aspects including entity, relation and event extraction, link prediction, and question answering. Empirically, our findings suggest that GPT-4 outperforms ChatGPT in the majority of tasks and even surpasses fine-tuned models in certain reasoning and question-answering datasets. Moreover, our investigation extends to the potential generalization ability of LLMs for information extraction, which culminates in the presentation of the Virtual Knowledge Extraction task and the development of the VINE dataset. Drawing on these empirical findings, we further propose AutoKG, a multi-agent-based approach employing LLMs for KG construction and reasoning, which aims to chart the future of this field and offer exciting opportunities for advancement. We anticipate that our research can provide invaluable insights for future undertakings of KG\footnote{Code and datasets will be available in //github.com/zjunlp/AutoKG.
This paper presents a comprehensive and practical guide for practitioners and end-users working with Large Language Models (LLMs) in their downstream natural language processing (NLP) tasks. We provide discussions and insights into the usage of LLMs from the perspectives of models, data, and downstream tasks. Firstly, we offer an introduction and brief summary of current GPT- and BERT-style LLMs. Then, we discuss the influence of pre-training data, training data, and test data. Most importantly, we provide a detailed discussion about the use and non-use cases of large language models for various natural language processing tasks, such as knowledge-intensive tasks, traditional natural language understanding tasks, natural language generation tasks, emergent abilities, and considerations for specific tasks.We present various use cases and non-use cases to illustrate the practical applications and limitations of LLMs in real-world scenarios. We also try to understand the importance of data and the specific challenges associated with each NLP task. Furthermore, we explore the impact of spurious biases on LLMs and delve into other essential considerations, such as efficiency, cost, and latency, to ensure a comprehensive understanding of deploying LLMs in practice. This comprehensive guide aims to provide researchers and practitioners with valuable insights and best practices for working with LLMs, thereby enabling the successful implementation of these models in a wide range of NLP tasks. A curated list of practical guide resources of LLMs, regularly updated, can be found at \url{//github.com/Mooler0410/LLMsPracticalGuide}.
Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.
Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.