亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, our main aim is to investigate the strong convergence for a neutral McKean-Vlasov stochastic differential equation with super-linear delay driven by fractional Brownian motion with Hurst exponent $H\in(1/2, 1)$. After giving uniqueness and existence for the exact solution, we analyze the properties including boundedness of moment and propagation of chaos. Besides, we give the Euler-Maruyama (EM) scheme and show that the numerical solution converges strongly to the exact solution. Furthermore, a corresponding numerical example is given to illustrate the theory.

相關內容

In this paper, we introduce a highly accurate and efficient numerical solver for the radial Kohn--Sham equation. The equation is discretized using a high-order finite element method, with its performance further improved by incorporating a parameter-free moving mesh technique. This approach greatly reduces the number of elements required to achieve the desired precision. In practice, the mesh redistribution involves no more than three steps, ensuring the algorithm remains computationally efficient. Remarkably, with a maximum of $13$ elements, we successfully reproduce the NIST database results for elements with atomic numbers ranging from $1$ to $92$.

In decision-making, maxitive functions are used for worst-case and best-case evaluations. Maxitivity gives rise to a rich structure that is well-studied in the context of the pointwise order. In this article, we investigate maxitivity with respect to general preorders and provide a representation theorem for such functionals. The results are illustrated for different stochastic orders in the literature, including the usual stochastic order, the increasing convex/concave order, and the dispersive order.

In this work is considered an elliptic problem, referred to as the Ventcel problem, involvinga second order term on the domain boundary (the Laplace-Beltrami operator). A variationalformulation of the Ventcel problem is studied, leading to a finite element discretization. Thefocus is on the construction of high order curved meshes for the discretization of the physicaldomain and on the definition of the lift operator, which is aimed to transform a functiondefined on the mesh domain into a function defined on the physical one. This lift is definedin a way as to satisfy adapted properties on the boundary, relatively to the trace operator.The Ventcel problem approximation is investigated both in terms of geometrical error and offinite element approximation error. Error estimates are obtained both in terms of the meshorder r $\ge$ 1 and to the finite element degree k $\ge$ 1, whereas such estimates usually have beenconsidered in the isoparametric case so far, involving a single parameter k = r. The numericalexperiments we led, both in dimension 2 and 3, allow us to validate the results obtained andproved on the a priori error estimates depending on the two parameters k and r. A numericalcomparison is made between the errors using the former lift definition and the lift defined inthis work establishing an improvement in the convergence rate of the error in the latter case.

We consider the problem of estimating a high-dimensional covariance matrix from a small number of observations when covariates on pairs of variables are available and the variables can have spatial structure. This is motivated by the problem arising in demography of estimating the covariance matrix of the total fertility rate (TFR) of 195 different countries when only 11 observations are available. We construct an estimator for high-dimensional covariance matrices by exploiting information about pairwise covariates, such as whether pairs of variables belong to the same cluster, or spatial structure of the variables, and interactions between the covariates. We reformulate the problem in terms of a mixed effects model. This requires the estimation of only a small number of parameters, which are easy to interpret and which can be selected using standard procedures. The estimator is consistent under general conditions, and asymptotically normal. It works if the mean and variance structure of the data is already specified or if some of the data are missing. We assess its performance under our model assumptions, as well as under model misspecification, using simulations. We find that it outperforms several popular alternatives. We apply it to the TFR dataset and draw some conclusions.

In the present work, strong approximation errors are analyzed for both the spatial semi-discretization and the spatio-temporal fully discretization of stochastic wave equations (SWEs) with cubic polynomial nonlinearities and additive noises. The fully discretization is achieved by the standard Galerkin ffnite element method in space and a novel exponential time integrator combined with the averaged vector ffeld approach. The newly proposed scheme is proved to exactly satisfy a trace formula based on an energy functional. Recovering the convergence rates of the scheme, however, meets essential difffculties, due to the lack of the global monotonicity condition. To overcome this issue, we derive the exponential integrability property of the considered numerical approximations, by the energy functional. Armed with these properties, we obtain the strong convergence rates of the approximations in both spatial and temporal direction. Finally, numerical results are presented to verify the previously theoretical findings.

This paper concerns the numerical approximation for the invariant distribution of Markovian switching L\'evy-driven stochastic differential equations. By combining the tamed-adaptive Euler-Maruyama scheme with the Multi-level Monte Carlo method, we propose an approximation scheme that can be applied to stochastic differential equations with super-linear growth drift and diffusion coefficients.

We prove explicit bounds on the exponential rate of convergence for the momentum stochastic gradient descent scheme (MSGD) for arbitrary, fixed hyperparameters (learning rate, friction parameter) and its continuous-in-time counterpart in the context of non-convex optimization. In the small step-size regime and in the case of flat minima or large noise intensities, these bounds prove faster convergence of MSGD compared to plain stochastic gradient descent (SGD). The results are shown for objective functions satisfying a local Polyak-Lojasiewicz inequality and under assumptions on the variance of MSGD that are satisfied in overparametrized settings. Moreover, we analyze the optimal choice of the friction parameter and show that the MSGD process almost surely converges to a local minimum.

The gradient bounds of generalized barycentric coordinates play an essential role in the $H^1$ norm approximation error estimate of generalized barycentric interpolations. Similarly, the $H^k$ norm, $k>1$, estimate needs upper bounds of high-order derivatives, which are not available in the literature. In this paper, we derive such upper bounds for the Wachspress generalized barycentric coordinates on simple convex $d$-dimensional polytopes, $d\ge 1$. The result can be used to prove optimal convergence for Wachspress-based polytopal finite element approximation of, for example, fourth-order elliptic equations. Another contribution of this paper is to compare various shape-regularity conditions for simple convex polytopes, and to clarify their relations using knowledge from convex geometry.

In industry, online randomized controlled experiment (a.k.a A/B experiment) is a standard approach to measure the impact of a causal change. These experiments have small treatment effect to reduce the potential blast radius. As a result, these experiments often lack statistical significance due to low signal-to-noise ratio. To improve the precision (or reduce standard error), we introduce the idea of trigger observations where the output of the treatment and the control model are different. We show that the evaluation with full information about trigger observations (full knowledge) improves the precision in comparison to a baseline method. However, detecting all such trigger observations is a costly affair, hence we propose a sampling based evaluation method (partial knowledge) to reduce the cost. The randomness of sampling introduces bias in the estimated outcome. We theoretically analyze this bias and show that the bias is inversely proportional to the number of observations used for sampling. We also compare the proposed evaluation methods using simulation and empirical data. In simulation, evaluation with full knowledge reduces the standard error as much as 85%. In empirical setup, evaluation with partial knowledge reduces the standard error by 36.48%.

Gate-defined quantum dots are a promising candidate system for realizing scalable, coupled qubit systems and serving as a fundamental building block for quantum computers. However, present-day quantum dot devices suffer from imperfections that must be accounted for, which hinders the characterization, tuning, and operation process. Moreover, with an increasing number of quantum dot qubits, the relevant parameter space grows sufficiently to make heuristic control infeasible. Thus, it is imperative that reliable and scalable autonomous tuning approaches are developed. This meeting report outlines current challenges in automating quantum dot device tuning and operation with a particular focus on datasets, benchmarking, and standardization. We also present insights and ideas put forward by the quantum dot community on how to overcome them. We aim to provide guidance and inspiration to researchers invested in automation efforts.

北京阿比特科技有限公司